Disclaimers

Important Notice

Copyright © SolarEdge Inc. All rights reserved.

No part of this document may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photographic, magnetic or otherwise, without the prior written permission of SolarEdge Inc.

The material furnished in this document is believed to be accurate and reliable. However, SolarEdge assumes no responsibility for the use of this material. SolarEdge reserves the right to make changes to the material at any time and without notice. You may refer to the SolarEdge web site (https://www.solaredge.com/us/) for the most updated version.

All company and brand products and service names are trademarks or registered trademarks of their respective holders.

The general terms and conditions of delivery of SolarEdge shall apply.

The content of these documents is continually reviewed and amended, where necessary. However, discrepancies cannot be excluded. No guarantee is made for the completeness of these documents.

The images contained in this document are for illustrative purposes only and may vary depending on product models.
FCC Compliance

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, you are encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Changes or modifications not expressly approved by the party responsible for compliance may void the user’s authority to operate the equipment.
Support and Contact Information

If you have technical problems concerning SolarEdge products, please contact us:

Support Center: https://www.solaredge.com/service/support

USA and Canada: 1 510 498 3200
Worldwide: +972 073 2403118
Fax: +1 (530) 273-2769
Email: ussupport@solaredge.com.

Support Center: https://www.solaredge.com/us/service/support

Before contact, make sure to have the following information at hand:

- Model and serial number of the product in question.
- The error indicated on the InverterLCD screen or on the monitoring platform or by the LEDs, if there is such an indication.
- System configuration information, including the type and number of modules connected and the number and length of strings.
- The communication method to the SolarEdge server, if the site is connected.
- The inverter software version as appears in the ID status screen.
Revision History

Version 4.3 (February 2019)
- Added appendix 'Determining the Circuit Breaker Size' and paragraph referencing to it, in the 'Grid Connection Guidelines' section.
- In Specifications removed 'Recommended OCPD size per grid' table.

Version 4.2 (July. 2018)
- This guide describes three phase inverters only
- Update of product names
- Hardware change - new enclosure, interfaces and communication board
- Addition of possibility to use compatible connectors from third-party manufacturers
- Update regarding use of extension cables in power optimizer installation guidelines
- Recommendation to mount the power optimizer in a location protected from direct sunlight
- Power optimizer clearance - no clearance is required on the mounting bracket side
- Addition of caution - installation in saline environment
- Clearance for three phase inverters installed side-by-side, single row of inverters outdoors: 5 cm / 2”
- PVRSS is enabled by default. Enabling/ disabling PVRSS feature can be done from the inverter LCD menus.
- Addition of reference to troubleshooting undetected devices application note
- Torque for grounding using the equipment grounding bus-bar: 4.0 N*M / 35.lb*in
- Torque for connecting DC strings to the fuse holders in the Safety Switch: 3.4 N*M / 30 lb*in
- Addition of link to the Designer web page
- Updated warning about sealing unused power optimizer input connectors
- DC safety voltage is 1V (±0.1V)
- Addition of RS485-2 support

- Updated the Safety section:
 - New warning: The Safety Switch meets all requirements for a code-compliant installation of this system. The DC Disconnect Switch disconnects both the positive and negative conductors.
 - New important safety feature information for inverters with automatic rapid shutdown (PVRSS)

- Overview section updated (system image, additional safety voltage initiator: Rapid Shutdown (PVRSS))

- In Supported AC Grids, added: Ground connection is required for all grids

- In Power Optimizer Installation chapter:
 - Added warning about grounding the power optimizer metallic enclosure
 - Updated string extension cable length
 - Added information for connecting multiple modules in parallel to an optimizer
 - Added grounding method testing information
 - Added: circuit conductors must be sized according to NEC 690.9 when combining strings
 - Removed reference to racking models and their grounding methods
 - Removed mentioning of tracker

- In inverter Installation chapter:
 - Added note about copper conductors
 - Removed previous interface panel description and images, and type 1 bracket
 - In Inverter Interfaces - updated ON/OFF switch description, added warning regarding PVRSS
 - Added a caution about not altering the Safety Switch enclosure: SolarEdge does not permit opening or puncturing the Safety Switch in any location other than the pre-defined drill guide locations,
or otherwise altering the construction of the enclosure, as this may compromise safety and will void the warranty.

- Reference to horizontal mounting application note
- Updated clearance specifications and added link for annual-average high temperature database

- Connection to/from the Safety Switch:
 - AC grounding to bus bar instead of terminal block - updated instructions and Safety Switch model images
 - String fusing requirement note updated: Fuses needed for 4 strings or more (instead of 3).
 - Added conduit sealing requirement

- In Commissioning chapter:
 - Updated the activation sequence
 - Updated menu information descriptions
 - Removed RS232 reference

- Rapid shutdown (PVRSS):
 - Added important safety information notes and warnings
 - For a compliant PV Rapid Shutdown installation, use no more than 30 optimizers per string.
 - Enabling PVRSS from the inverter menu is only required if the installed optimizers were manufactured before 2015, otherwise it is enabled by default.
 - Added testing PVRSS functionality after pairing

- In Configuration Menu Options:
 - Communication section:
 - Removed RS232 Conf
 - Added GSM Conf
 - Power Control section:
 - Removed Phase Balance link and info
 - Added a note about compliance with UL 1741 Supplement A.
 - Add link to P(Q) diagram application note
 - Maintenance section:
Added links to application notes (Upgrading the inverter using SD card; Isolation fault troubleshooting; Arc fault detection)

Removed Optimizer Conf

Status Screens updates:

- Meter status screen - added Power and Energy lines
- Telemetry status screen - updated
- GSM status screen - new

Communication options - updated

Inverter cover removal sequence - updated

RS485-E option - new

Added link to Arc Detection application note

Troubleshooting:

- Error codes moved to a separate document. A link was added to the manual.
- Slave Detect and Slave List - updated

Mechanical specifications - removed type 1 bracket

External fan replacement - updated

Updated the technical specification document

Addition of 2D codes to all links, to enable accessing by scanning

Version 4.0 (Oct. 2015)

- Added SE14.4KUS and SE33.3KUS models
- Explained which optimizer installation steps to skip when using smart modules.
- Power optimizer grounding section aligned with the grounding application note.
- Clearances as distance from the inverter instead of the Safety Switch
- Added RS485 slave detect feature
- Removed USB
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disclaimers</td>
<td>1</td>
</tr>
<tr>
<td>Important Notice</td>
<td>1</td>
</tr>
<tr>
<td>FCC Compliance</td>
<td>2</td>
</tr>
<tr>
<td>Support and Contact Information</td>
<td>3</td>
</tr>
<tr>
<td>Revision History</td>
<td>4</td>
</tr>
<tr>
<td>Contents</td>
<td>8</td>
</tr>
<tr>
<td>HANDLING AND SAFETY INSTRUCTIONS</td>
<td>10</td>
</tr>
<tr>
<td>Safety Symbols Information</td>
<td>10</td>
</tr>
<tr>
<td>IMPORTANT SAFETY INSTRUCTIONS</td>
<td>11</td>
</tr>
<tr>
<td>Chapter 1: Introducing the SolarEdge Power Harvesting System</td>
<td>15</td>
</tr>
<tr>
<td>Power Optimizer</td>
<td>15</td>
</tr>
<tr>
<td>Inverter with Safety Switch</td>
<td>16</td>
</tr>
<tr>
<td>Monitoring Platform</td>
<td>16</td>
</tr>
<tr>
<td>Supported AC Grids</td>
<td>17</td>
</tr>
<tr>
<td>Installation Procedure</td>
<td>17</td>
</tr>
<tr>
<td>Installation Equipment List</td>
<td>17</td>
</tr>
<tr>
<td>Inverter Transport and Storage</td>
<td>18</td>
</tr>
<tr>
<td>Chapter 2: Installing the Power Optimizers</td>
<td>19</td>
</tr>
<tr>
<td>Safety</td>
<td>19</td>
</tr>
<tr>
<td>Package Contents</td>
<td>21</td>
</tr>
<tr>
<td>Installation Guidelines</td>
<td>21</td>
</tr>
<tr>
<td>Step 1: Mounting and Grounding the Power Optimizers</td>
<td>25</td>
</tr>
<tr>
<td>Step 2: Connecting a PV Module to a Power Optimizer</td>
<td>28</td>
</tr>
<tr>
<td>Step 3: Connecting Power Optimizers in Strings</td>
<td>28</td>
</tr>
<tr>
<td>Step 4: Verifying Proper Power Optimizer Connection</td>
<td>29</td>
</tr>
<tr>
<td>Chapter 3: Installing the Inverter</td>
<td>31</td>
</tr>
<tr>
<td>Inverter Package Contents</td>
<td>31</td>
</tr>
<tr>
<td>Identifying the Inverter</td>
<td>31</td>
</tr>
<tr>
<td>Inverter Interfaces</td>
<td>31</td>
</tr>
<tr>
<td>Opening Conduit Drill Guides</td>
<td>35</td>
</tr>
<tr>
<td>Mounting the Inverter</td>
<td>36</td>
</tr>
<tr>
<td>Chapter 4: Connecting the AC and the Strings to the Safety Switch</td>
<td>42</td>
</tr>
<tr>
<td>Grid Connection Guidelines</td>
<td>43</td>
</tr>
<tr>
<td>Setting the Inverter to Support 208V 3-wire Grid</td>
<td>44</td>
</tr>
<tr>
<td>Connecting the AC Grid to the Safety Switch</td>
<td>45</td>
</tr>
<tr>
<td>Connecting the Strings to the Safety Switch</td>
<td>49</td>
</tr>
<tr>
<td>Chapter 5: Commissioning the Installation</td>
<td>52</td>
</tr>
<tr>
<td>Step 1: Activating the System</td>
<td>52</td>
</tr>
</tbody>
</table>

Three Phase System Installation Guide MAN-01-00002-4.3
<table>
<thead>
<tr>
<th>Step 2: Pairing Power Optimizers to the Inverter</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3: Verifying Proper Activation</td>
<td>56</td>
</tr>
<tr>
<td>Step 4: Reporting and Monitoring Installation Data</td>
<td>57</td>
</tr>
<tr>
<td>Chapter 6: User Interface</td>
<td>60</td>
</tr>
<tr>
<td>LCD User Buttons</td>
<td>60</td>
</tr>
<tr>
<td>Inverter Configuration – Setup Mode</td>
<td>62</td>
</tr>
<tr>
<td>Status Screens - Operational Mode</td>
<td>74</td>
</tr>
<tr>
<td>Chapter 7: Setting Up Communication</td>
<td>83</td>
</tr>
<tr>
<td>Communication Options</td>
<td>83</td>
</tr>
<tr>
<td>Communication Connectors</td>
<td>85</td>
</tr>
<tr>
<td>Removing the Inverter Cover</td>
<td>86</td>
</tr>
<tr>
<td>Creating an Ethernet (LAN) Connection</td>
<td>87</td>
</tr>
<tr>
<td>Creating an RS485 Bus Connection</td>
<td>91</td>
</tr>
<tr>
<td>Verifying the Connection</td>
<td>95</td>
</tr>
<tr>
<td>Appendix A: Errors and Troubleshooting</td>
<td>96</td>
</tr>
<tr>
<td>Troubleshooting Communication</td>
<td>96</td>
</tr>
<tr>
<td>Power Optimizer Troubleshooting</td>
<td>98</td>
</tr>
<tr>
<td>Appendix B: Mechanical Specifications</td>
<td>100</td>
</tr>
<tr>
<td>Appendix C: External Fan Maintenance and Replacement</td>
<td>101</td>
</tr>
<tr>
<td>Fan Maintenance</td>
<td>101</td>
</tr>
<tr>
<td>External Fan Replacement</td>
<td>102</td>
</tr>
<tr>
<td>Appendix D: Replacing and Adding System Components</td>
<td>104</td>
</tr>
<tr>
<td>Replacing an Inverter</td>
<td>104</td>
</tr>
<tr>
<td>Replacing the Safety Switch</td>
<td>106</td>
</tr>
<tr>
<td>Adding, Removing, or Replacing Power Optimizers</td>
<td>109</td>
</tr>
<tr>
<td>Appendix E: Determining the Circuit Breaker Size</td>
<td>110</td>
</tr>
<tr>
<td>Revision History</td>
<td>110</td>
</tr>
<tr>
<td>Introduction</td>
<td>110</td>
</tr>
<tr>
<td>Using Transformers in Commercial Three Phase Inverter Installations</td>
<td>110</td>
</tr>
<tr>
<td>Determining the Size of an Inverter Circuit Breaker</td>
<td>112</td>
</tr>
<tr>
<td>Technical Specifications - Single Phase Inverters (North America)</td>
<td>114</td>
</tr>
<tr>
<td>Default Trip Limits and Times According to IEEE1547</td>
<td>119</td>
</tr>
<tr>
<td>Safety Switch</td>
<td>120</td>
</tr>
<tr>
<td>Technical Specifications - Three Phase Inverters (North America)</td>
<td>121</td>
</tr>
<tr>
<td>Default Trip Limits and Times According to IEEE1547</td>
<td>127</td>
</tr>
<tr>
<td>Safety Switch</td>
<td>127</td>
</tr>
</tbody>
</table>
HANDLING AND SAFETY INSTRUCTIONS

During installation, testing and inspection, adherence to all the handling and safety instructions is mandatory. Failure to do so may result in injury or loss of life and damage to the equipment.

Safety Symbols Information

The following safety symbols are used in this document. Familiarize yourself with the symbols and their meaning before installing or operating the system.

WARNING!
Denotes a hazard. It calls attention to a procedure that, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a warning note until the indicated conditions are fully understood and met.

⚠️ **AVERTISSEMENT!**
Dénote un risque: il attire l’attention sur une opération qui, si elle n’est pas faite ou suivi correctement, pourrait causer des blessures ou un danger de mort. Ne pas dépasser une telle note avant que les conditions requises soient totalement comprises et accomplies.

CAUTION!
Denotes a hazard. It calls attention to a procedure that, if not correctly performed or adhered to, could result in damage or destruction of the product. Do not proceed beyond a caution sign until the indicated conditions are fully understood and met.

⚠️ **ATTENTION!**
Dénote un risque: il attire l’attention sur une opération qui, si elle n’est pas faite ou suivi correctement, pourrait causer un dommage ou destruction de l’équipement. Ne pas dépasser une telle note avant que les conditions requises soient totalement comprises et accomplies.

NOTE
Denotes additional information about the current subject.

IMPORTANT SAFETY FEATURE
Denotes information about safety issues.
IMPORTANT SAFETY INSTRUCTIONS

SAVE THESE INSTRUCTIONS

CONSIGNES DE SÉCURITÉ IMPORTANTES

CONSERVEZ CES INSTRUCTIONS

WARNING!
The inverter cover must be opened only after switching the inverter ON/OFF switch located at the bottom of the inverter to OFF. This disables the DC voltage inside the inverter. Wait five minutes before opening the cover. Otherwise, there is a risk of electric shock from energy stored in the capacitors.

AVERTISSEMENT!
Ne pas ouvrir le couvercle de l'onduleur avant d'avoir coupé l'interrupteur situé en dessous de l'onduleur. Cela supprime les tensions CC et CA de l'onduleur. Attendre cinq minutes avant d'ouvrir le couvercle. Sinon, il y a un risque de choc électrique provenant de l'énergie stockée dans le condensateur.

WARNING!
Before operating the inverter, ensure that the inverter is grounded properly. This product must be connected to a grounded, metal, permanent wiring system, or an equipment-grounding conductor must be run with the circuit conductors and connected to the equipment grounding terminal or lead on the product.

AVERTISSEMENT!
Avant d'utiliser l'onduleur monophasé, assurez-vous que l'onduleur est correctement mis à la terre. Ce produit doit être raccordé à un système de câblage fixe, métallique, l'équipement-le conducteur de mise à la terre doit être exécuté avec les conducteurs de circuit et raccordé à l'équipement borne de mise à la terre ou de plomb sur le produit.

WARNING!
Opening the inverter and repairing or testing under power must be performed only by qualified service personnel familiar with this inverter.

AVERTISSEMENT!
L'unité ne doit être ouverte que par un technicien qualifié dans le cadre de l'installation et de la maintenance.
WARNING!
The Safety Switch meets all requirements for a code-compliant installation of this system. The DC Disconnect Switch disconnects both the positive and negative conductors.

AVERTISSEMENT!
Le sectionneur externe (inclus) repond aux exigences de conformité pour l’installation de ce système. Le coupeur CC ouvre les conducteurs positifs et négatifs.

WARNING!
The inverter input and output circuits are isolated from the enclosure. This system does not include an isolation transformer and should be installed with an ungrounded PV array in accordance with the requirements of NEC Articles 690.35 and 690.43 National Electric Code, ANSI/NFPA 70, 2011 (and Canadian Electrical Code, Part I, for installations in Canada).

Equipment grounding is the responsibility of the installer and must be performed in accordance with all applicable Local and National Codes.

AVERTISSEMENT!

WARNING!
Three phase 9,10, 20 kW inverter must be connected to a dedicated AC branch circuit with a maximum Overcurrent Protection Device (OCPD) of 40A.

Three phase 14.4, 33.3 kW inverters must be connected only to a dedicated AC branch circuit with a maximum Overcurrent Protection Device (OCPD) of 60A.

AVERTISSEMENT!
Les onduleurs triphasés 9,10,20 kW doivent être connectés à un branchement AC dédié avec un disjoncteur de 40A.

L’onduleur triphasés 14.4, 33.3 kW doivent être connectés à un branchement AC dédié avec un disjoncteur de 60A.

CAUTION!
This unit must be operated according to the technical specification datasheet provided with the unit.

ATTENTION!
Cette unité doit être utilisée selon les spécifications de fonctionnement, comme décrit dans la dernière fiche technique des spécifications.

CAUTION!
HEAVY OBJECT. To avoid muscle strain or back injury, use proper lifting techniques, and if required - a lifting aid.

ATTENTION!
Objet lourd. Pour éviter la fatigue musculaire ou des blessures au dos, utilisez des techniques de levage appropriées et, si nécessaire - un auxiliaire de levage lors du retrait.

NOTE
The inverter is NEMA type 3R rated. Unused conduit openings and glands should be sealed with appropriate seals.

NOTE
- Use only copper conductors rated for a minimum of 90°C/194°F.
- For the SE10KUS, SE20KUS, SE33.3KUS three phase inverters where opposite polarity DC conductors are routed in the same conduit, 1000V rated cables must be used.

NOTE
This inverter is provided with an IMI (Isolation Monitor Interrupter) for ground fault protection.

NOTE
The symbol ☐ appears at grounding points on the SolarEdge equipment. This symbol is also used in this manual.

NOTE
A SolarEdge inverter may be installed in a site with a generator, however must not operate at the same time as the generator.

Operating an inverter and a generator simultaneously will void the warranty. SolarEdge requires installing a physical or electronic interlock, which will prevent the generator and inverter from operating simultaneously. Interlock procurement, installation, maintenance and support are the responsibility of the installer. Damage to the inverter due to incorrect interlock installation or use of an interlock that is incompatible with the SolarEdge system will render the SolarEdge warranty invalid.
IMPORTANT SAFETY INFORMATION

- Building or structures with both utility service and a PV system, complying with NEC 690.12, shall have a permanent plaque or directory including the following wording: **PHOTOVOLTAIC SYSTEM EQUIPPED WITH RAPID SHUTDOWN.** The term “PHOTOVOLTAIC” may be replaced with “PV.” The plaque or directory shall be reflective, with all letters capitalized and having a minimum height of 9.5mm (3/8 in.) in white on red background.

- Attention - The system status indicator shall be installed in a location in close proximity to the system actuator, where the indication of safe shutdown can be clearly seen.

- This rapid shutdown system is required to be provided with an actuating device or a status indicator which shall be installed in a location accessible to first responders, or be connected to an automatic system which initiates rapid shutdown upon the activation of a system disconnect or activation of another type of emergency system.

- Additionally, in a prominent location near the actuator device the end use installation shall be provided with a permanent marking including the following wording: **PHOTOVOLTAIC SYSTEM EQUIPPED WITH RAPID SHUTDOWN.** The term “PHOTOVOLTAIC” may be replaced with “PV”. The plaque or directory shall be reflective, with all letters capitalized and having a minimum height of 9.5mm (3/8 in.) in white on red background.
Chapter 1: Introducing the SolarEdge Power Harvesting System

The SolarEdge power harvesting solution maximizes the power output from any type of solar Photovoltaic (PV) installation while reducing the average cost per watt. The following sections describe each of the system’s components.

![Diagram of SolarEdge power harvesting system components](image)

Figure 1: The SolarEdge power harvesting system components

Power Optimizer

The power optimizers are DC-DC converters connected to PV modules in order to maximize power harvesting by performing independent Maximum Power Point Tracking (MPPT) at the module level.

The power optimizers regulate the string voltage at a constant level, regardless of string length and environmental conditions.

The power optimizers include a safety voltage function that automatically reduces the output of each power optimizer to 1 Vdc in the following cases:

- During fault conditions
- The power optimizers are disconnected from the inverter
- The inverter ON/OFF switch is turned OFF
- The safety switch on the Safety Switch is turned OFF
- The inverter AC breaker is turned OFF
The Rapid Shutdown (PVRSS) is initiated by one of the following methods:

- Inverter AC breaker is turned OFF, or AC to the inverter is disconnected by another method (intentionally or as result of a fault)
- Inverter ON/OFF switch is turned OFF
- The Safety Switch is turned OFF
- For inverters with Manual Rapid Shutdown, initiation is done by switching the Safety Switch OFF

Each power optimizer also transmits module performance data over the DC power line to the inverter.

Two types of power optimizers are available:

- Module Add-on power optimizer – connected to one or more modules
- Smart modules - the power optimizer is embedded into a module

Inverter with Safety Switch

The inverter efficiently converts DC power from the modules into AC power that can be fed into the main AC service of the site and from there to the grid. The inverter also receives the monitoring data from each power optimizer and transmits it to a central server (the monitoring platform; requires Internet connection).

The Safety Switch has a manually operated switch for disconnecting the DC power of a SolarEdge system.

The Safety Switch is located below the inverter and is connected to the inverter with AC and DC wires.

Monitoring Platform

The monitoring platform enables monitoring the technical and financial performance of one or more SolarEdge sites. It provides past and present information on the system performance both at the system and module levels.
Supported AC Grids

Figure 2: AC grids supported by SolarEdge three phase inverters

NOTE
Grid support depends on the inverter model. Some three phase inverters support the 208V 3-wire grid. Refer to Setting the Inverter to Support 208V 3-wire Grid on page 44.

Installation Procedure

The following is the procedure for installing and setting up a new SolarEdge site. Many of these also apply to modification of an existing site.

2. Recording power optimizer serial numbers (optional), page 58.
3. Mounting the inverter, Page 36.
4. Connecting the strings and the AC to the Safety Switch, page 42.
5. Commissioning and activating the installation, page 52.
6. Connecting the inverter to the monitoring platform, page 59.
7. Configuring the inverter, page 60.

Installation Equipment List

Standard tools can be used during the installation of the SolarEdge system. The following is a recommendation of the equipment needed for installation:
Allen screwdriver for 5mm screw type for the inverter cover, Safety Switch cover, and inverter side screws

Standard flat-head screwdrivers set

Non-contact voltage detector

Cordless drill (with a torque clutch) or screwdriver and bits suitable for the surface on which the inverter and optimizers will be installed and for opening the Safety Switch drill guides. Use of an impact driver is not allowed.

Appropriate mounting hardware (for example: stainless bolts, nuts, and washers) for attaching:

- the mounting brackets to the mounting surface
- the power optimizer to the racking (not required for smart modules)

Wire cutters

Wire strippers

Voltmeter

For installing the communication options, you may also need the following:

- For Ethernet:
 - CAT5/6 twisted pair Ethernet cable with RJ45 connector.
 - If using a CAT5/6 cable spool: RJ45 plug and RJ45 crimper

- For RS485:
 - Four- or six-wire shielded twisted pair cable.
 - Watchmaker precision screwdriver set

Inverter Transport and Storage

Transport the inverter in its original packaging, facing up and without exposing it to unnecessary shocks. If the original package is no longer available, use a similar box that can withstand the weight of the inverter (refer to the inverter weight in the specification datasheet provided with the unit), has a handle system and can be closed fully.

Store the inverter in a dry place where ambient temperatures are -13°F to 140°F / -25°C to +60°C.
Chapter 2: Installing the Power Optimizers

Safety

The following notes and warnings apply when installing the power optimizers. Some of the following may not be applicable to smart modules:

<table>
<thead>
<tr>
<th>WARNING!</th>
<th>The metallic enclosure of the power optimizer must be grounded in accordance with the product's listing and local and national codes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERTISSEMENT!</td>
<td>L’enceinte métallique de l’optimiseur de puissance doit être mise à la terre en accord avec les régulations locales et nationales.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING!</th>
<th>When modifying an existing installation, turn OFF the inverter ON/OFF switch, the Safety Switch and the AC circuit breaker on the main AC distribution panel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERTISSEMENT!</td>
<td>Avant de faire ces étapes, éteignez l’onduleur monophasé en mettant sur OFF l’interrupteur ON/OFF situé au bas de l’onduleur.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION!</th>
<th>Power optimizers are IP68/NEMA6P rated. Choose a mounting location where optimizers will not be submerged in water.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTENTION!</td>
<td>Les optimiseurs de puissances sont compatibles à la norme IP68/NEMA6P. Choisissez le lieu de montage tel que l’optimiseur ne puisse pas être submergé par l’eau.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION!</th>
<th>This unit must be operated according to the operating specifications provided with the unit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTENTION!</td>
<td>Cette unité doit être opérée suivant les instructions trouvées dans le manuel fourni avec le produit.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION!</th>
<th>Cutting the power optimizer input or output cable connector is prohibited and will void the warranty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTENTION!</td>
<td>Sectionner les cables d’entrées ou de sortie de l’optimiseur est interdit et annule sa garantie.</td>
</tr>
</tbody>
</table>
CAUTION!
All PV modules must be connected to a power optimizer.

ATTENTION!
Tous les modules doivent être connectés à un optimiseur de puissance.

CAUTION!
If you intend to mount the optimizers directly to the module or module frame, first consult the module manufacturer for guidance regarding the mounting location and the impact, if any, on module warranty. Drilling holes in the module frame should be done according to the module manufacturer instructions.

ATTENTION!
Pour installation à même le module ou la monture du module, consultez d'abord le fabricant du module sur la position et son impact sur la garantie du module. Le perçage de trous dans le cadre du module devra se faire suivant les instructions du fabricant.

CAUTION!
Installing a SolarEdge system without ensuring compatibility of the module connectors with the optimizer connectors may be unsafe and could cause functionality problems such as ground faults, resulting in inverter shut down. To ensure mechanical compatibility of the power optimizers’ connectors with the PV modules’ connectors to which they are connected:

- Use identical connectors from the same manufacturer and of the same type on both the power optimizers and on the modules; or
- Verify that the connectors are compatible in the following way:
 - The module connector manufacturer should explicitly verify compatibility with the SolarEdge optimizer connector; and
 - A third-party test report by one of the listed external labs (TUV, VDE, Bureau Veritas UL, CSA, InterTek) should be obtained, verifying the compatibility of the connectors.

For more information, refer to
ATTENTION!
Les connecteurs du module doivent être mécaniquement compatibles avec les optimiseurs de puissance. Sinon, le système SolarEdge installé peut être dangereux ou causer des problèmes fonctionnels, tels que les défauts de terre, qui peuvent provoquer un arrêt de l’onduleur. Afin d’assurer la compatibilité mécanique entre les optimiseurs de puissance SolarEdge et les modules auxquels ils sont connectés:

- Utiliser des connecteurs identiques du même fabricant et du même type aussi bien pour les optimiseurs de puissance que pour les modules.
- Vérifiez que les connecteurs sont compatibles de la manière suivante:

 - Le fabricant du connecteur doit explicitement vérifier la compatibilité avec le connecteur SolarEdge.
 - Un rapport de test de tierce partie doit être effectué par l’un des laboratoires externes indiqués ci-dessous:(TUV, VDE, Bureau Veritas UL, CSA,Intertek), qui vérifiera la compatibilité des connecteurs.

Pour plus d’informations, consultez

IMPORTANT SAFETY FEATURE
Modules with SolarEdge power optimizers are safe. They carry only a low safety voltage before the inverter is turned ON. As long as the power optimizers are not connected to the inverter or the inverter is turned OFF, each power optimizer will output a safe voltage of 1V.

Package Contents
- Power optimizers
- Stainless steel grounding lock washers

Installation Guidelines
- The minimum and maximum string length guidelines are stated in the power optimizer datasheets. Refer to the Designer for string length verification. The Designer is available on the SolarEdge website at
Frame-mounted power optimizers are mounted directly on the module frame, regardless of racking system (rail-less or with rails). For installation of frame-mounted power optimizers, refer to http://www.solaredge.com/sites/default/files/installing_frame_mounted_power_optimizers.pdf.

The steps in this chapter refer to module add-on power optimizers. For smart modules, start from Step 3: Connecting Power Optimizers in Strings on page 28. Step 3: Connecting Power Optimizers in Strings on page 28 Also refer to the documentation supplied with the smart modules.

The power optimizer can be placed in any orientation.

If connecting more modules than optimizer inputs in parallel, use a branch cable. Some commercial power optimizer models have a dual input.

Position the power optimizer close enough to its module so that their cables can be connected.

Make sure to use power optimizers that have the required output conductor length:

Do not use extension cables between a module and a power optimizer, between two modules connected to the same optimizer, or between two optimizers other than in the cases specified below.

You can use extension cables between power optimizers only from row to row, around obstacles within a row, and from the end of the string to the inverter, as long as the maximum distance is not exceeded.
NOTE

• The total conductor length of the string (excluding power optimizers’ conductors; including home runs and necessary extensions between optimizers) should not exceed the following:

<table>
<thead>
<tr>
<th>Inverter model</th>
<th>Total conductor length (from DC+ to DC- of the inverter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE9KUS, SE10KUS, SE20KUS</td>
<td>1000 ft. /300 m</td>
</tr>
<tr>
<td>SE14.4KUS, SE33.3KUS</td>
<td>2300 ft./ 700 m</td>
</tr>
</tbody>
</table>

• Use at least 11 AWG/ 4 mm² DC cables.

⚠️ Completely shaded modules may cause their power optimizers to temporarily shut down. This will not affect the performance of the other power optimizers in the string, as long as the minimum number of unshaded power optimizers connected in a string of modules is met. If under typical conditions fewer than the minimum optimizers are connected to unshaded modules, add more optimizers to the string.

⚠️ Equipment grounding tightening torques: 4-6 AWG: 45 lb-in, 8 AWG: 40 lb-in, 10-14 AWG: 35 lb-in.

⚠️ To allow for heat dissipation, maintain a 2.5 cm / 1" clearance distance between the power optimizer and other surfaces, on all sides except the mounting bracket side.

Figure 3: Power optimizer clearance
When installing modules in a confined space, for example, if installing Building-integrated photovoltaic (BIPV) modules, ventilation measures may be needed to ensure the power optimizers are not be exposed to temperatures outside their specifications.

NOTE

The images contained herein are for illustrative purposes only and may vary depending on product models.
Step 1: Mounting and Grounding the Power Optimizers

For each of the power optimizers\(^1\):

1. Determine the power optimizer mounting location and use the power optimizer mounting brackets to attach the power optimizer to the support structure (See Figure 4). It is recommended to mount the power optimizer in a location protected from direct sunlight. For frame-mounted power optimizers follow the instructions supplied with the optimizers, or refer to https://www.solaredge.com/sites/default/files/installing_frame_mounted_power_optimizers.pdf.

2. If required, mark the mounting hole locations and drill the hole.

 CAUTION!

 Drilling vibrations may damage the power optimizer and will void the warranty. Use a torque wrench or an electric drill with adjustable clutch that meets the mounting torque requirements. *Do not* use impact drivers for mounting the power optimizer.

 Do not drill through the power optimizer or through the mounting holes.

 ATTENTION!

 Les vibrations résultant du perçage peuvent endommager l’optimiseur de puissance et annulera la garantie. Utilisez une clé dynamométrique ou une perceuse électrique avec embrayage adaptable compatible avec les moments indiqués. Ne pas utiliser des tournevis à percussion pour fixer l’optimiseur. Ne pas percer à travers l’optimiseur de puissance ou ses trous de fixation.

3. Attach each power optimizer to the rack using M6 (1/4”) stainless steel bolts, nuts and washers or other appropriate mounting hardware. Apply torque of 9-10 N*m / 6.5-7 lb*ft.

 For 3NA series power optimizers, SolarEdge recommends mounting the power optimizer on a rail with the smooth side facing out, so that the power optimizer body will prevent its rotation.

\(^1\) Not applicable to smart modules.
4. Use the following methods\(^{(1)}\) to ground the power optimizer:

WARNING!

The metallic enclosure of the power optimizer must be grounded in accordance with the requirements of the local and national codes.

AVERTISSEMENT!

L’enceinte métallique de l’optimiseur de puissance doit être mise à la terre en accord avec les régulations locales et nationales.

- **For mounting on a grounded metal rail:** Use the provided 5/16” stainless steel grounding star washer between the railing and the flat side of the mounting bracket. The grounding washer should break through the anodize coating of the railing to ensure low resistive connection. Apply torque of 9.5 N*m / 7 lb*ft. See Figure 4.

![Figure 4: Power optimizer installation and grounding using a star washer](image)

- **For mounting on rails with sliding nut fasteners:** If the star washer cannot be used, use the SolarEdge grounding plate (purchased separately) between the railing and the flat side of the mounting bracket. Use mounting specific hardware as needed. Apply torque of 9.5 N*m / 7 lb*ft. See Figure 5.

\(^{(1)}\)These methods have been evaluated by a nationally recognized testing laboratory as part of the optimizer evaluation. The SolarEdge-supplied grounding lug kit has been evaluated only for use with SolarEdge power optimizers. It is not intended or listed to be used as a general purpose grounding lug with other electrical equipment.
Figure 5: Power optimizer installation and grounding using a grounding plate

For mounting on un-grounded structures (such as a wooden structure): If the star washer or the plate cannot be used, use the SolarEdge grounding lug (purchased separately) with an equipment-grounding conductor according to the supplied instructions. The grounding terminal accepts a wire size of 6-14 AWG, and must be sized for equipment grounding per NEC 250.122 requirements. Tighten the screws connecting the power optimizer to the frame and the grounding terminal screw. Apply torque of 9.5 N*m / 7 lb*ft. See Figure 6.

Figure 6: Power optimizer grounding terminal

5. Verify that each power optimizer is securely attached to the module support structure.

6. Record power optimizer serial numbers and locations, as described in Step 4: Reporting and Monitoring Installation Data on page 57.
Step 2: Connecting a PV Module to a Power Optimizer

NOTE
Images are for illustration purposes only. Refer to the label on the product to identify the plus and minus input and output connectors.

For each of the power optimizers:

- Connect the Plus (+) output connector of the module to the Plus (+) input connector of the power optimizer.
- Connect the Minus (-) output connector of the module to the Minus (-) input connector of the power optimizer.

Figure 7: Power optimizer connectors

Step 3: Connecting Power Optimizers in Strings

You can construct parallel strings of unequal length, that is, the number of power optimizers in each string does not have to be the same. The minimum and maximum string lengths are specified in the power optimizer datasheets. Refer to the Designer for string length verification.

IMPORTANT SAFETY FEATURE

For a compliant PV Rapid Shutdown System (PVRSS) installation, use no more than 30 optimizers per string.

1. Connect the Minus (-) output connector of the string’s first power optimizer to the Plus (+) output connector of the string’s second power optimizer.
2. Connect the rest of the power optimizers in the string in the same manner.

WARNING!

If using a dual-input power optimizer and some inputs are not used, seal the unused input connectors with the supplied pair of seals.
3. If you intend to monitor the installation, using the monitoring platform, record the physical location of each power optimizer, as described in Creating Logical and Physical Layout using Installation Information on page 58.

Step 4: Verifying Proper Power Optimizer Connection

When a module is connected to a power optimizer, the power optimizer outputs a safe voltage of 1V (±0.1V). Therefore, the total string voltage should equal 1V times the number of power optimizers connected in series in the string. For example, if 10 power optimizers are connected in a string, then 10V should be produced.

Make sure the PV modules are exposed to sunlight during this process. The power optimizer will only turn ON if the PV module provides at least 2W.

In SolarEdge systems, due to the introduction of power optimizers between the PV modules and the inverter, the short circuit current I_{SC} and the open circuit voltage V_{OC} hold different meanings from those in traditional systems.

→ To verify proper power optimizer connection:
Measure the voltage of each string individually before connecting it to the other strings or to the inverter. Verify correct polarity by measuring the string polarity with a voltmeter. Use a voltmeter with at least 0.1V measurement accuracy.

NOTE

Since the inverter is not yet operating, you may measure the string voltage and verify correct polarity on the DC wires inside the Safety Switch.

For troubleshooting power optimizer operation problems, refer to *Power Optimizer Troubleshooting* on page 98.
Chapter 3: Installing the Inverter

Install the inverter either before or after the modules and power optimizers have been installed.

NOTE

- Use only copper conductors rated for a minimum of 90°C/194°F.
- For the SE10KUS, SE20KUS, SE33.3KUS three phase inverters where opposite polarity DC conductors are routed in the same conduit, 1000V rated cables must be used.

Inverter Package Contents

- One inverter with Safety Switch
- One mounting bracket
- Two Allen screws for fastening the inverter to the mounting bracket
- Quick Installation guide (with activation card and instructions)
- Optional (for wireless communication to monitoring platform) - RF antenna and mounting bracket
- AC ferrite bead kit

Identifying the Inverter

Refer to the sticker on the inverter that specifies its **Serial Number** and its **Electrical Ratings**. Provide the serial number when contacting SolarEdge support. The serial number is also required when opening a new site in the monitoring platform.

Inverter Interfaces

The following figure shows the inverter connectors and components, located at the bottom of the inverter.
Inverter Interfaces

- **AC and DC conduit entries**: Connection points of the Safety Switch.

- **Two communication glands**, for connection of inverter communication options. Each gland has three openings. Refer to *Setting Up Communication* on page 83 for more information.

- **LCD light button**: Pressing this button lights up the LCD for 30 seconds. In addition, you can press this button to view inverter status screens and access configuration menu options, as described *Configuring the Inverter Using the LCD Light Button* on page 64.

- **ON/OFF switch**: Turning this switch ON (after the power optimizers are paired with the inverter) starts the operation of the power optimizers, enables power production and allows the inverter to begin exporting power to the utility grid. Turning it OFF reduces the power optimizer voltage to a low safety voltage and inhibits exportation of power. When this switch is OFF, the inverter control circuitry remains powered up.

WARNING!

For inverters with manual Rapid Shutdown (PVRSS) functionality - Upon PVRSS, the internal circuitry remains up, therefore the inverter cover must be opened only after shutting off the inverter ON/OFF switch. This disables the DC voltage inside the inverter. Wait five minutes before opening the cover. Otherwise, there is a risk of electric shock from energy stored in the capacitors.

AVERTISSEMENT!

A la Coupure Rapide (PVRSS) les circuits internes restent actifs, il est
donc impératif de n’ouvrir le couvercle qu’après avoir arrêté l’onduleur à l’aide de l’interrupteur ON/OFF. Ceci coupe la tension DC à l’intérieur de l’onduleur. Attendez cinq minutes avant d’ouvrir le couvercle. Sinon, il y a risque d’électrocution du à l’énergie stockée dans les condensateurs.

- **LCD panel**: displays inverter information and configuration parameters
- **LCD LEDs**: Three LEDs indicate the following inverter statuses:

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Power production</td>
<td>On - The inverter is producing power. Blinking - Standby mode. The inverter is in Standby mode until its working voltage is reached. The inverter then enters Production mode and produces power. Off - The inverter is not producing power. This may be during Night mode, when the inverter ON/OFF switch is OFF or when an error occurs.</td>
</tr>
</tbody>
</table>
| Yellow| Module communication and inverter shutdown | **Blinking**:
- Monitoring information is being received from a power optimizer.
- The inverter is being shut down. |
| Red | Fault | **On** - There is an error. Refer to *Errors and Troubleshooting* on page 96 for more information. **Blinking** - The inverter is being shut down. |

All LEDs turn on while the inverter is being configured.
Figure 10: Inverter front view
Opening Conduit Drill Guides

This section describes how to open drill guides.

CAUTION!

SolarEdge does not permit opening or puncturing the Safety Switch in any location other than the pre-defined drill guide locations, or otherwise altering the construction of the enclosure, as this may compromise safety and will void the warranty. This includes, but is not limited to, the use of fasteners like rivets, screws, nails, inserts, or pins.

For jurisdictions requiring field applied markings on the Safety Switch enclosure, such as labels or placards that display PV system information, adhesive labels or placards that comply with ANSI Z535 and are compatible with the enclosure material may be used.

ATTENTION!

SolarEdge n’autorise pas l’ouverture or la perforation du commutateur de sécurité a tout endroit autre que les emplacements de perforation guidés prédéfinis, ou la modification de l’enceinte électrique, car cela compromettrait la sécurité et annulerait la garantie. Ceci inclus, sans être limité à, l’utilisation de fixations comme des rivets, vis, clous, inserts ou des broches.

Pour les juridictions ou un marquage de sécurité est requis sur le couvercle du coupeur DC, tels que des labels ou étiquettes qui figurent des information du système PV, des labels ou étiquettes adhésifs compatibles avec ANSI Z535 peuvent être utilisés qui sont compatibles avec le matériau du couvercle.

This step may be performed before or after mounting the inverter.

→ To open conduit drill guides:

1. Move the Safety Switch and the inverter ON/OFF switch to OFF.
2. Loosen the screws on the front cover of the Safety Switch, as shown below:

![Loosen these screws](image1)

Figure 11: Opening the Safety Switch cover

3. Remove the Safety Switch cover.

4. Open the required AC and DC conduit drill guides according to the conduits used in the installation: The drill guides are located at the bottom, back and sides of the enclosure, each with two sizes: ¾” and 1”. Open the required pair, taking care not to interfere with any of the internal components. It is recommended to use a Unibit drill.

![Drill Guides](image2)

Figure 12: Safety Switch drill guides

NOTE

Unused conduit openings and glands should be sealed with appropriate seals.

Mounting the Inverter

The inverter is typically mounted vertically, and the instructions in this section are applicable for vertical installation. Some three phase inverter models can be installed horizontally (above 10° tilt) as well as vertically, and at any tilt over 10° up to 90°. For information and instructions for horizontal mounting refer to http://www.solaredge.com/sites/default/files/application_note_horizontal_mouting_of_three_phase_inverters.pdf.

The inverter is supplied with a mounting bracket.
NOTE
Make sure the mounting surface or structure can support the weight of the inverter and bracket, and make sure that it spans the width of the bracket.

CAUTION!
HEAVY OBJECT. To avoid muscle strain or back injury, use proper lifting techniques, and if required - a lifting aid.

ATTENTION!
Objet lourd. Pour éviter la fatigue musculaire ou des blessures au dos, utilisez des techniques de levage appropriées et, si nécessaire - un auxiliaire de levage lors du retrait.

CAUTION!
SolarEdge inverters and power optimizers can be installed at a minimum distance of 50 m/ 164 ft from the shoreline of an ocean or other saline environment, as long as there are no direct salt water splashes on the inverter or power optimizer.

ATTENTION!
Les onduleurs SolarEdge peuvent être installés à une distance minimum de 50m de la ligne d'eau de l'océan ou autre environnement salin, tant qu’il n’y a pas d’éclaboussements d’eau salée directs sur l’onduleur.

1. Determine the inverter mounting location, on a wall, stud framing or pole. It is recommended to mount the inverter in a location protected from direct sunlight.

2. To allow proper heat dissipation, maintain the following minimum clearance areas between the inverter and other objects:

- If installing a single inverter:
 - 8" (20 cm) from the top of the inverter.
 - At least 4" (10 cm) from the bottom of the Safety Switch; if conduit entry to the Safety Switch will be from the bottom, leave sufficient clearance for the conduits as well.
 - 4" (10 cm) from the right and left of the inverter. For easy access to the fans, a larger clearance is recommended.

- If installing multiple inverters:
When installing inverters one above the other, leave at least 8" (20 cm) between the top of an inverter and the bottom of the Safety Switch.

When installing inverters side by side, follow these clearance specifications:

<table>
<thead>
<tr>
<th>Location</th>
<th>Indoor Installation</th>
<th>Outdoor Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locations where the annual average high temperature(^{(1)}) is below 25°C / 77°F</td>
<td>20 cm / 8" between inverters</td>
<td>5 cm / 2" between inverters (if inverters are also installed one above the other, maintain the indoor installation clearance)</td>
</tr>
<tr>
<td>Locations where the annual average high temperature(^{(1)}) is above 25°C / 77°F</td>
<td>40 cm / 16" between inverters</td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) Annual average high temperature – the average of the 12 monthly average highs, for example:

Refer to http://www.weatherbase.com/ to find the value in your location.
3. Position the mounting bracket against the wall/pole and mark the drilling hole locations (refer to *Mechanical Specifications* on page 100 for inverter and mounting bracket dimensions):
 - Ensure that the flat edge of the bracket is at the bottom, as in *Figure 15*.
 - Use at least two bracket holes. Additional holes can be used to fix the bracket. Determine which and how many holes to use according to mounting surface type and material.

4. Drill the holes and mount the bracket. Verify that the bracket is firmly attached to the mounting surface.
NOTE

When mounting an inverter on an uneven surface, you may use spacers/washers behind the top mounting hole of the bracket. Depending on the angle, use the appropriate size and number of spacers so that the bracket is perpendicular to the ground. Recommended: a stainless steel 3/4” long screw, with a 1/4” socket button head, two jam nuts and three washers.

5. Hang the inverter on the bracket (see Figure 15): Lift the inverter from the sides, or hold it at the top and bottom of the inverter to lift the unit into place. Do not lift holding the Safety SwitchDC Safety Unit as it may be damaged.

6. Align the two indentations in the inverter enclosure with the two triangular mounting tabs of the bracket, and lower the inverter until it rests on the bracket evenly.

7. Secure the Safety Switch bracket to the wall:

8. For inverters with Safety Switch - secure the Safety Switch bracket to the wall:
 - Mark the location of the bracket screw for the Safety Switch and drill the hole.
Fasten the bracket using a standard bolt.

Verify that the bracket is firmly attached to the mounting surface.

Figure 16: Safety Switch bracket

9. Insert the two supplied screws through the outer heat sink fin on both sides of the inverter and into the bracket (see Figure 15). Tighten the screws with a torque of 4.0 N*m / 2.9 lb.*ft.
Chapter 4: Connecting the AC and the Strings to the Safety Switch

The Safety Switch disconnects all ungrounded DC conductors in compliance with the National Electric Code (NEC; Specifically NEC690.35, which addresses ungrounded PV arrays). The Safety Switch is rated to the maximum operating conditions of the inverter. Inverters of different models are equipped with different sizes/ types of terminal blocks. The following figures illustrate several of the available Safety Switches.

Figure 17: Inside the Safety Switch for three phase inverters (9kW, 10kW, 20kW)
Grid Connection Guidelines

- Equipment grounding tightening torques: 4-6 AWG: 45 lb-in, 8 AWG: 40 lb-in, 10-14 AWG: 35 lb-in.
- The conduits, hubs and fittings must be suited for field wiring systems.
- The hubs and other fittings must comply with UL514B.
- Use only copper conductors rated for a minimum of 90°C.
- For the SE10KUS, SE20KUS, SE33.3KUS three phase inverters where opposite polarity DC conductors are routed in the same conduit, 1000V rated cables must be used.
- Use the conduit and wiring appropriate for the installation location per the NEC. Outdoor installations must use components that are rated NEMA 3R or higher.

NOTE

Setting the Inverter to Support 208V 3-wire Grid

SolarEdge inverters that support the 208V 3-wire grid are equipped with two fuse holders and a fuse in each unit. The position of the fuse configures the AC grid connection: 4-wire or 3-wire grid connection. By default, the fuse is located in the 4-wire fuse holder of the inverter, and in the 3-wire fuse holder there is a plastic dummy fuse.

To set the inverter for 3-wire grid connection, you must move the fuse from the 4-wire fuse holder, marked as Y GRID, to the 3-wire fuse holder, marked as Δ GRID (see Figure 19).

→ To set the inverter for 208V 3-wire grid connection:

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform this procedure for all inverter units.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform this procedure before connecting the inverter to the AC grid.</td>
</tr>
</tbody>
</table>

1. Remove the inverter cover: Open the inverter cover’s six Allen screws and carefully pull the cover horizontally before lowering it.

2. Identify the fuse locations and the markings as described in Figure 19.

3. Remove the dummy fuse from the 3-wire grid fuse holder and set it aside.

4. Move the fuse from the 4-wire grid fuse holder to the 3-wire grid fuse holder.

5. Place the dummy fuse in the 4-wire grid fuse holder.

6. During system setup, set the country to the appropriate 3-wire grid option. Using the non-3-wire setting may result in incorrect system operation.

Figure 19: Fuse locations and markings
CAUTION!
If the fuse was moved to support one of the grid types, do not connect the inverter to the other grid type without switching the fuse back to the correct holder. Connecting the inverter to grids when the fuse is incorrectly located may damage the inverter and void the warranty.

ATTENTION!
Si le fusible a été déplacé pour supporter l’un des types de réseau, ne branchez pas l’onduleur sur l’autre type de réseau avant de remettre le fusible dans son bon support. Brancher l’onduleur au réseau quand le fusible est mal placé, peut endommager l’onduleur et annuler la garantie.

Connecting the AC Grid to the Safety Switch

CAUTION!
Do not remove or disconnect the meter during inverter installation.

ATTENTION!
Ne pas enlever ou débrancher le compteur pendant l’installation de l’onduleur.

CAUTION!
When moving the pivoting plate, make sure that the wires are not strained to avoid loosening the connections. When flipping the plate up to its original position, check for loose wires or connectors, and when closing the inverter, recheck for proper functionality as described in this procedure.

ATTENTION!
Si vous faites pivoter le couvercle du compteur, faites attention de ne pas tendre les câbles au point d’affaiblir les connections. Quand vous remettrez le couvercle à sa position originelle, vérifiez que les câbles ou les connecteurs ne sont pas détachés, et quand vous refermerez l’onduleur, revérifier son fonctionnement tel qu’il est décrit dans cette procédure.

NOTE
• Use only copper conductors rated for a minimum of 90°C/194°F.
• For the SE10KUS, SE20KUS, SE33.3KUS three phase inverters where opposite polarity DC conductors are routed in the same conduit, 1000V rated cables must be used.
To connect AC to ground:

1. Insert the grounding cable through the AC drill guide.
2. Connect the cable to the equipment grounding bus-bar. Tighten using a torque of 4.0 N*M / 35 lb-in.

Figure 20: AC grounding in the Safety Switch

NOTE
The Safety Switches are equipped with different types of terminal blocks. The above figure is one example of the available Safety Switches.
To connect the AC grid to the Safety Switch – 14.4 & 33.3kW inverters:

1. Remove the spring-clamp terminal instructions from inside the switch.
2. Strip 1\% " (35mm) of the AC wire insulation.
3. Insert the AC conduit into the AC-side drill guide that was opened.

NOTE

Connect the equipment grounding before connecting the AC wires to the AC terminal block.

Veillez à relier le conducteur de PE (la terre) avant de connecter les fils CA au bornier CA.

4. Connect the wires to the appropriate terminal blocks according to the labels on the terminal blocks (N, L1, L2, L3).
5. Use a 13/64" (5mm) straight flat-blade screwdriver to connect the wires to the terminals:
 1. Insert the screwdriver into the front opening and rotate it counterclockwise to activate the clamp mechanism. The side latch holds the clamp in the open position.
 2. Insert the wire into the side opening as deep as possible.
 3. Slightly rotate the screwdriver counter-clockwise to release the latch.
 4. Remove the screwdriver – the wire is safely clamped.

![figure](image-url)

Figure 21: AC Spring-clamp terminal example - 33.3KW inverter

6. Verify that there are no unconnected wires.
To connect the AC grid to the Safety Switch – 9kW, 10kW, 20kW:

1. Strip 05/16” (8mm) of the AC wire insulation.
2. Insert the AC conduit into the AC-side drill guide that was opened.

NOTE

Connect the equipment grounding before connecting the AC wires to the AC.

Veillez à relier le conducteur de PE (la terre) avant de connecter les fils CA au bornier CA.

3. Connect the wires as follows:
 1. Use a standard flat-blade screwdriver to connect the wires to the spring-clamp terminals (See Figure 22).
 2. The screwdriver blade should fit freely in the terminal opening. Too large a blade can crack the plastic housing.
 3. Insert the screwdriver, press the release mechanism and open the clamp.
 4. Insert the wire into the round opening and remove the screwdriver – the wire is automatically clamped.

![Figure 22: AC Spring-clamp terminal – 9kW, 10kW, 20kW inverter](image)
Connecting the Strings to the Safety Switch

You can connect systems with multiple DC strings in parallel to the DC input terminals of the switch. Inverters have one, two or three pairs of DC input terminals, depending on the inverter power rating. If more strings are required, they can be connected in parallel using an external combiner box before connecting to the switch. When connecting multiple strings, it is recommended to run separate circuits to the Safety Switch or to position the combiner box near the switch. This simplifies commissioning by allowing testing and servicing near the inverter.

To connect the strings to the safety switch:

1. Strip 5/16” (8 mm) of the DC wire insulation.
2. Insert the DC conduit into the DC-side drill guide that was opened.
3. Equipment grounding: Connect the DC equipment ground conductor to the equipment grounding terminal block in the Safety Switch.

NOTE

Functional Electrical Earthing of DC-side negative or positive is prohibited because the inverter has no transformer. Equipment grounding of exposed conductive surfaces in the array is required per the NEC.

4. Connect the DC wires:

CAUTION!

Ensure that the Plus (+) wire(s) is connected to the (+) terminal and that the Minus (-) wire is connected to the Minus (-) terminal connector.

ATTENTION!

Veillez à ce que le câble(s) Plus (+) soit connecté au terminal (+) et que le câble (-) soit connecté au (-) terminal.

NOTE

For systems with four PV strings per unit or more, fuses may need to be installed in both the positive and negative conductors as required by NEC Article 690.9. For more information, refer to the "String Fusing Requirements in SolarEdge Systems” technical note at http://www.solaredge.com/files/pdfs/string_fusing_requirements.pdf.

NOTE

SolarEdge's fixed input voltage architecture enables the parallel strings to be of different lengths. Therefore, they do not need to have the same number of power optimizers, as long as the length of each string is within the permitted range.
For three phase inverters 9kW, 10kW and 20kW - Connect the DC wires from the PV installation to the DC+ and DC- terminal blocks, according to the labels on the terminals:

- Use a standard flat-blade screwdriver to connect the wires to the spring-clamp terminals. The screwdriver blade should fit freely in the terminal opening. Too large a blade can crack the plastic housing. See Figure 23
- Insert the screwdriver and firmly tilt it to press the release mechanism and open the clamp.
- Insert the wire into the front opening.
- Remove the screwdriver – the wire is automatically clamped. Check that the wire is fully inserted and cannot be pulled out easily.

Figure 23: DC Spring-clamp terminal example - 9kW, 10kW and 20kW inverters

For three phase inverters 14.4kW and 33.3kW – Connect the DC wires from the PV installation to the DC+ and DC- terminal blocks:

- Insert the screwdriver into the front opening and rotate it counterclockwise to activate the clamp mechanism. The side latch holds the clamp in the open position.
- Insert the wire into the side opening as deep as possible.
- Slightly rotate the screwdriver counter-clockwise to release the latch.
- Remove the screwdriver – the wire is safely clamped.
5. Close the Safety Switch cover: Attach the switch cover and secure it by tightening the four screws with a torque of 1.2 N*m / 0.9 ft.*lb.

6. Ensure proper conduit sealing; inspect the entire conduit run and use standard conduit sealants to avoid water penetration.
Chapter 5: Commissioning the Installation

This chapter describes how to activate the system, pair the power optimizers to the inverter and verify the proper functioning of the system.

Step 1: Activating the System

1. Verify that the inverter ON/OFF switch is OFF.
2. Verify that the Safety Switch is in the OFF position.
3. Remove the inverter cover: Open the inverter cover’s six Allen screws and carefully pull the cover horizontally before lowering it.

 WARNING!

 ELECTRICAL SHOCK HAZARD. Do not touch uninsulated wires when the inverter cover is removed.

 RISQUE D’ÉLECTROCUTION, ne touchez pas les fils non isolés lorsque le couvercle de l’onduleur est retiré.

4. Activate the inverter:
 a. Verify that the card S/N matches the inverter S/N.
 b. Insert the card into the "CARD" slot on the communication board.
 c. Turn ON the AC switch of the main circuit board.
 d. LCD shows: Running Script... → Done!

![Activation card](image)

If LCD shows: Failed:
Turn AC OFF and ON (reset), and repeat the activation process.

Use the activation code that appears on the certification inverter label to manually activate the inverter.

If the problem persists, contact SolarEdge Support.

NOTE

You can use the activation code that appears on the certification inverter label to activate the inverter in case of a script error or a missing activation card.
5. Verify that the inverter is configured to the proper country: Press the LCD light button until reaching the ID status screen:

```
ID: # # # # # # # #
DSP1/2: 1.0210/1.0034
CPU: 0003.19xx
Country: USA1
```

6. If required, perform the following additional steps before closing the inverter cover:
 - Country settings or inverter configuration using the internal LCD user buttons – refer to *Country and Grid* on page 66.
 - Communication options connection – refer to *Setting Up Communication* on page 83.

7. Close the inverter cover by tightening the screws with a torque of 10.3 N*M/ 7.5 lb*ft. For proper sealing, first tighten the corner screws and then the two central screws. The following figure illustrates recommended order:

![Tightening order of the screws](image)

8. Ensure proper conduit sealing; inspect the entire conduit run and use standard conduit sealants to avoid water penetration.

9. Turn ON the Safety Switch. If an additional external DC switch is installed between the power optimizers and the inverter(s) then turn it ON.

 A status screen similar to the following appears on the LCD panel:

```
 Vac [V] Vdc [V] Pac [w]
240.7 14.1 0.0
P_OK: 000/000 <S_OK>
OFF
```

10. Verify that the following information appears on the LCD panel:
- **P_OK**: Appears only upon pairing process completion and first telemetry reception from the power optimizers. Indicates connection to the power optimizers and that at least one power optimizer is sending monitoring data.
- **000/000**: Appears only upon first telemetry reception from the power optimizers. Indicates the number of power optimizers that have been paired to this inverter.
- **S_OK**: The connection to the SolarEdge monitoring platform is successful (should appear only if the inverter is connected to the server).
- **Vac [V]**: The grid AC output voltage. Verify the correct value.
- **Vdc [V]**: The DC input voltage of the longest string connected to the inverter. There should be a safety voltage of 1V for each power optimizer in the string.

NOTE
A measurement error on the inverter LCD of ±3 V is acceptable.

- **Pac [w]**: The AC output power (should be 0.0 since the inverter is OFF).
- **OFF**: The inverter ON/OFF switch is in the OFF position.

Step 2: Pairing Power Optimizers to the Inverter
Once all connections are made, all the power optimizers must be logically paired to their inverter. The power optimizers do not start producing power until they are paired. This step describes how to assign each inverter to the power optimizers from which it will produce power.

Perform this step when the modules are exposed to sunlight. If the string length is changed or a power optimizer is replaced, repeat the pairing process.

1. Perform pairing: Press and hold down the inverter LCD Light button for about 10 seconds. The following message is displayed:

```
Keep holding button for pairing, release to enter menu...
Remaining: 3 sec
```

Keep holding for 5 seconds until the following is displayed:

```
Pairing
Turn Switch To On
```

2. Turn the inverter ON/OFF switch to ON within 5 seconds. If you wait longer than 5
seconds the inverter exits the pairing mode. The following message is displayed indicating that the inverter is performing the pairing:

![Pairing Remaining [sec]: 180]

3. Wait for the completion of the pairing (remaining seconds is 0). If pairing fails, an error is displayed. In this case, repeat the pairing steps, and refer to Power Optimizer Troubleshooting on page 98. If the problem persists, contact SolarEdge Support. When pairing succeeds, the following message is displayed:

![Pairing Pairing Completed]

The system startup process begins:

Once the inverter is ON, the power optimizers start producing power and the inverter starts converting AC.

WARNING!
When you turn ON the inverter ON/OFF switch, the DC cables carry a high voltage and the power optimizers no longer output a safe 1V output.

AVERTISSEMENT!
Après avoir mis l'interrupteur ON/OFF de l'onduleur monophasé sur ON, les câbles DC portent une haute tension et les optimiseurs de puissance ne génèrent plus la tension de sécurité de 1V.

When the inverter starts converting power after the initial connection to the AC, the inverter enters Wakeup mode until its working voltage is reached. This mode is indicated by the flickering green inverter LED. While the inverter is in Wakeup mode, it monitors the grid and verifies correct grid voltage and frequency. The following message is displayed:

![Waking Up... Remaining: 051 Sec]

The countdown indicates the seconds remaining until entering the Production mode. This time is in accordance with local regulations and is typically between three to five minutes.

When countdown is complete, the inverter enters Production mode and produces power. The steadily lit green inverter LED indicates this mode.

Step 3: Verifying Proper Activation

After the wake-up time is over, a status screen similar to the following appears on the inverter LCD panel:
1. Verify the following:
 - The green inverter LED is steadily lit.
 - The ON/OFF indicator on the LCD panel reads **ON**.
 - **P_OK: XXX/YYY**: There is a connection to the power optimizers and at least one power optimizer is sending monitoring data. Optimizers send telemetries in a frequency of up to 10 minutes. Initially after pairing, both XXX and YYY values show 000 and the values increase as paired power optimizers are reported.

 NOTE
 It may take up to 20 minutes for all power optimizers to transmit their telemetries and to be counted on the LCD screen.

 - **S_OK** appears, if the inverter is connected to the SolarEdge monitoring platform.
 - **Vac [V]** specifies the measured grid AC output voltage.
 - **Vdc [V]** specifies the DC input voltage, which should be approximately the inverter DC voltage (model dependent; refer to the inverter datasheet)
 - **Pac [W]** specifies the AC output power produced.

2. Take note of the serial number on the inverter label using the detachable 2D barcode sticker on each device. This information is used in the SolarEdge monitoring platform to identify this inverter.

Your SolarEdge power harvesting system is now operational.

Step 4: Reporting and Monitoring Installation Data

NOTE
Monitoring the site requires connecting the inverter to the monitoring platform, using any of the wired or wireless options available from SolarEdge. Refer to *Setting Up Communication* on page 83.

The Monitoring Platform

The monitoring platform provides enhanced PV performance monitoring and yield assurance through immediate fault detection and alerts at the module, string and system level.
Using the platform, you can:

- View the latest performance of specific components.
- Find under-performing components, such as modules, by comparing their performance to that of other components of the same type.
- Pinpoint the location of alerted components using the physical layout.

The monitoring platform enables accessing site information, including up-to-date information viewed in a physical or logical view:

- **Logical Layout**: Shows a schematic tree-layout of the components in the system, such as: inverters, strings, modules, meters and sensors, as well as their electrical connectivity. This view enables you to see which modules are connected in each string, which strings are connected to each inverter, and so on.

- **Physical Layout**: Provides a bird’s eye view of the actual placement of modules in the site, and allows pinpoint issues to the exact location of each module on a virtual site map.

If you do not report the mapping of the installed power optimizers, the monitoring platform will show the logical layout indicating which power optimizers are connected to which inverter, but will not show strings or the physical location of power optimizers.

The monitoring platform includes a built-in help system, that guides you through the monitoring functionality.

For more information, refer to https://www.solaredge.com/products/pv-monitoring#/.

Creating Logical and Physical Layout using Installation Information

To display a logical layout, insert the inverter serial number in the new site created in the monitoring platform. When the communication between the inverter and the monitoring server is established, the logical layout is displayed.

To display a physical layout, you need to map the locations of the installed power optimizers. To map the locations, use one of the methods described in the next sections.

Designer

Designer recommends inverter and power optimizer selection per site size and enables report generation. You can create a project in Designer and export the site design with the string layout to the monitoring platform.
For more information, refer to https://www.solaredge.com/products/installer-tools/designer#/

Mapper Application

Use the Mapper smart phone application to scan the power optimizer and inverter 2D bar-codes and create a virtual map of a PV site for enhanced monitoring and easier maintenance.

The Mapper application is integrated with the monitoring platform and enables:

- Simple on-site registration of new systems.
- Creating, editing and verifying system physical layout.
- Scanning and assigning the power optimizer serial number to the correct module in the system physical layout.

For detailed information, refer to the Mapper demo movies:

- Creating new sites using the Mapper mobile application
- Mapping existing sites using the Mapper mobile application

Physical Layout Editor

1. If you are a registered installer, access the monitoring platform site creation page at https://monitoring.solaredge.com/solaredge-web/p/home#createSites. If you have not yet signed up, go to https://monitoring.solaredge.com/solaredge-web/p/createSelfNewInstaller.

2. Fill out all required information in the screen, which includes information about your installation, as well as details about its logical and physical mapping.

Using a Paper Template

Fill out the Physical Layout Template (downloadable from the SolarEdge website http://www.solaredge.com/files/pdfs/physical-layout-template.pdf) using the detachable 2D barcode stickers on each power optimizer. Once the form is completed, use the Mapper to scan the 2D codes and create the map in the monitoring platform. Optionally, you can send the sticker sheet to SolarEdge Support for physical layout creation.
Chapter 6: User Interface

LCD User Buttons

Four buttons are located inside the inverter above the LCD panel and are used for controlling the LCD menus, as shown below:

![LCD Internal menu buttons](image)

Figure 27: LCD Internal menu buttons

Use the four user buttons to control the LCD panel menus:

- **Esc**: Moves the cursor (>) to the beginning of the currently displayed parameter; goes to the previous menu, and cancels a value change with a long press (until Aborted is displayed).

- **Up (1) and Down (2)**: Moves the cursor from one menu option to another, moves among the characters of a displayed parameter, and toggles between possible characters when setting a value.

- **Enter (3)**: Selects a menu option and accepts a value change with a long press (until Applied is displayed).

Use the three rightmost buttons for entering the digits 123 when entering the Setup mode password 12312312.

The LCD screen displays status information of the system and various menus for configuration options. The LCD panel and buttons are used during the following processes:

- **Operational mode**: The LCD panel allows checking for proper system operation. Refer to Status Screens - Operational Mode on page 74 for a description of this option. Use the LCD light button to toggle through the informative displays.
Setup mode: Upon installation, an installer may perform basic configuration, as described in *Inverter Configuration – Setup Mode* on page 62.

Error messages: In the event of a problem, an error message may be displayed on the LCD panel.

Inverter Configuration – Setup Mode

You can configure the inverter using one of the following:

- **The internal LCD user buttons.** When using this option, the inverter cover is removed.
- **The external LCD light button.** When using this option, removing the inverter cover is not required. This option of configuration includes a less detailed set of menus.

Configuring the Inverter Using the Internal LCD User Buttons

After inverter installation, an installer may perform basic system configuration. Configuration is done when the inverter is in Setup mode.

→ To enter Setup mode:

1. Turn the inverter ON/OFF switch to OFF (AC remains ON).

 WARNING!

 If the inverter was operating properly (power was produced by the power optimizers), the following message is displayed.

 ![warning_icon] **DC VOLTAGE NOT SAFE**
 DO NOT DISCONNECT
 VDC: 72.0

 This message is displayed until the DC voltage is safe (50V). Do not open the cover until the voltage is safe or until at least five minutes have passed.

 AVERTISSEMENT!

 La tension de sécurité par défaut est de 50V.
 Ne pas ouvrir le couvercle ou les connecteurs DC jusqu’à ce que la tension soit affichée comme sécurisé ou jusqu’à ce que cinq minutes au moins se soient écoulées.

2. Press the Enter button for at least 5 seconds. The following message is displayed:

 ![password_icon] **Please enter Password**

3. Use the three rightmost internal LCD user buttons to type in the following password: **12312312**. The following menu is displayed:
The inverter is now in Setup mode and all its LEDs are lit. The inverter automatically exits Setup mode if no buttons are pressed for more than 2 minutes.

The following shows a hierarchical tree of the menu options, which are described in Configuration Menu Options on page 66. Actual menus may vary from shown depending on the firmware version of the inverter and on the country.

Main menu:

Country: USA +

Language:

English
German
Spanish
French
Italian

Communication:

Server <LAN>
LAN Conf
RS485-1 Conf <S>
ZigBee Conf <S>
Cellular Conf
GPIO Conf <MTR>
Power Control (1):

- Grid Control <En>
- Energy Manager
- RR CR Conf.
- Reactive Pwr Conf.
- Active Pwr Conf.
- Phase Balance <Dis>
- Wakeup Conf.
- P(f)
- Advanced
- Load Defaults

Display:

- Temperature <C>
- LCD On Time <30>
- TLM On Time <15>

Maintenance:

- Date and Time
- Reset Counters
- Factory Reset
- FW Upgrade
- AFCI <Dis>
- Diagnostics
- Standby Mode
- Grid Protection
- Board Replacement

Information:

- Versions
- Error Log
- Warning Log
- Hardware IDs

Configuring the Inverter Using the LCD Light Button

Use the LCD light button for communication setup and for displaying the Error log and Warning Log without having to open the Inverter cover. There are fewer menus available when using this configuration option; however, the functionality of these menus is the same as when using the internal LCD user buttons.

(1) Phase Balance is applicable to single phase inverters only.
1. Turn the inverter ON/OFF switch to OFF.

2. Press and hold down the LCD light button until the following message is displayed:

 Keep holding button for pairing, release to enter menu...
 Remaining: 3 sec

 Releasing the button displays the following menu:

 Optimizer pairing
 Language < eng >
 Communication
 Maintenance
 Information
 Exit

3. Short-press (one second) to scroll down to the next menu option, and long-press (three seconds) to select the item. You can use the Exit option in these menus to move up one menu level or to exit the Setup mode from the main menu.

 The following shows a hierarchical tree of the menu options that appear when using the LCD light button:

 Main menu:

 Optimizer pairing
 Language < eng >
 Communication
 Maintenance
 Information
 Exit

 Language:

 English
 German
 Spanish
 French
 Italian
 Exit

 Communication(1):

(1)If Wi-Fi is connected, the ZigBee Conf menu is not displayed, and vice versa.
The options presented in these menus are described in the next section.

Configuration Menu Options

This section describes how to use the LCD menus for configuring the inverter. Configuration is only available when the inverter ON/OFF switch is OFF. Use either the internal LCD user buttons or the external LCD light button to move between and select menu options.

Country and Grid

Configuring the country and grid is available using the internal user buttons only.

1. Select the **Country** option to specify the country or region in which the inverter is installed and the grid to which it is connected. This parameter may arrive pre-configured. If so, verify that it is set to the proper country or region.
WARNING!
The inverter must be configured to the proper country/region in order to ensure that it complies with the country grid code and functions properly with the country grids.

A list of countries is displayed. If no country is configured, the value is <NONE>.

NOTE
If an inverter is not configured to any country, it will not produce energy, and the following message will be displayed on the LCD:
No Country Selected

A plus sign (+) near the country indicates that another menu will be displayed after selection.

- When selecting Auto (single phase only), the inverter automatically detects the used grid: 208VAC or 240VAC. When using single phase inverters, refer to Supported AC Grids on page 17 to determine if the Auto option may be used.
- When selecting an option with No Neutral or No N, connection to Neutral line is not required. For any other option, you must connect the Neutral line.
- When connecting to the 480/277V grid, select the 277V setting.

2. Confirm your country selection in the confirmation screen: Toggle to YES and press Enter.

Language
1. Select the Language option to set the language in which the LCD should display.
2. Confirm your language selection in the confirmation screen: Toggle to YES and press Enter.

Communication
1. Select the Communication option to define and configure:
 - The communication option used by the inverter to communicate with the SolarEdge monitoring platform
 - The communication option used to communicate between multiple SolarEdge devices or other external non-SolarEdge devices, such as energy meters or loggers.
2. Select Server to set which communication method is used to communicate between devices and the monitoring platform. Refer to Setting Up Communication on page 83 for a full description of these communication options.

NOTE
The Server menu shows only the communication options installed in the inverter.

The following shows a hierarchical tree of the menu options in the Communication menu.

For detailed information about all the configuration options, refer to the Communication Options Application Note, available on the SolarEdge website at http://www.solaredge.us/files/pdfs/solaredge-communication_options_application_note_v2_250_and_above.pdf.

Communication

Server:

- LAN
- RS485
- Zigbee
- Cellular
- None

Communication⁽¹⁾ **⁽²⁾**:

- Server < LAN >
- LAN Conf
- RS485 – 1 Conf < S >
- ZigBee Conf < S >
- Cellular Conf
- GPIO Conf < MTR >

(1) When using the SolarEdge Cellular Plug-in with the provided SIM card, the Cellular Conf menu is unavailable.

(2) When using the SolarEdge GSM products, RS232 Conf menu is unavailable.
LAN Conf:

<table>
<thead>
<tr>
<th>IP Config</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set DHCP <en></td>
</tr>
<tr>
<td>Set IP</td>
</tr>
<tr>
<td>Set Mask</td>
</tr>
<tr>
<td>Set Gateway</td>
</tr>
<tr>
<td>Set DNS</td>
</tr>
<tr>
<td>Set Server Addr</td>
</tr>
<tr>
<td>Set Server Port</td>
</tr>
<tr>
<td>Modbus TCP <Dis></td>
</tr>
</tbody>
</table>

RS485-1 Conf:

| Device Type <SE> |
| Protocol <M> |
| Device ID <1> |
| Slave Detect <#> |
| Cluster SLV Detect |
| Long Slave Detect <#> |
| Slave List <#> |
| Multi-Inv. Set |

ZigBee Conf. (enabled only if the ZigBee internal card is connected):

| Device Type <SE> |
| Protocol <MPS> |
| Device ID <1> |
| PAN ID |
| Scan Channel |
| Load ZB Defaults |

Wi-Fi Conf (enabled only if the internal card is connected):

| Scan Networks |
| Set key |
| Load Defaults |
RS232 Conf:\(^{(1)}\):

<table>
<thead>
<tr>
<th>Device Type <SE></th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol <GSM></td>
</tr>
<tr>
<td>Set APN</td>
</tr>
<tr>
<td>Set Modem Type</td>
</tr>
<tr>
<td>Set User Name</td>
</tr>
<tr>
<td>Set Password</td>
</tr>
</tbody>
</table>

GPIO Conf:

| Device Type <RRCR> |

Power Control

<table>
<thead>
<tr>
<th>Grid Control <En></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Manager</td>
</tr>
<tr>
<td>RRCR Conf.</td>
</tr>
<tr>
<td>Reactive Pwr Conf.</td>
</tr>
<tr>
<td>Active Pwr Conf.</td>
</tr>
<tr>
<td>Phase Balance <Dis></td>
</tr>
<tr>
<td>Wakeup Conf.</td>
</tr>
<tr>
<td>P(f)</td>
</tr>
<tr>
<td>Advanced</td>
</tr>
<tr>
<td>Load Defaults</td>
</tr>
</tbody>
</table>

The Grid Control option may be disabled. Enabling it opens additional options in the menu.

The Energy Manager option is used for setting power export limitation, as described in the *Export Limitation Application Note*, available on the SolarEdge website at https://www.solaredge.com/sites/default/files/export_limitation_application_note_NA.pdf.

For P(Q) diagram refer to

\(^{(1)}\)When using the SolarEdge GSM products this menu is unavailable.
NOTE
SolarEdge inverters with “Grid Support” functionality (as marked on the inverter certification label), are compliant with UL 1741 Supplement A. The functionality is built into the inverter and no additional external device is required.

Display
Select Display to set the following:

- **Temperature**: Select Celsius or Fahrenheit units.
- **LCD On Time <30>**: The number of seconds that the LCD backlight is ON after pressing the LCD light button. Set a value within the range of 10-120 seconds.
- **TLM On Time <15>**: The number of minutes that the LCD backlight is ON while viewing the Telemetry window. Set a value within the range of 1-120 minutes.

Maintenance
Select Maintenance to set the following options:

- **Date and Time**: Set the internal real-time clock. If connected to the SolarEdge monitoring platform, the date and time are set automatically and only time zone should be set.
- **Reset Counters**: Resets the accumulated energy counters that are sent to the SolarEdge monitoring platform
- **Factory Reset**: Performs a general reset to the default device settings.
- **FW Upgrade**: Perform a software upgrade by using an SD card. Refer to [upgrading_an_inverter_using_micro_sd_card.pdf](#).

- **Standby Mode:** Enables/disables the Standby Mode - for remote commissioning. After you set the inverter to the Standby Mode, the batteries will charge until reaching an SOE of 100% to prevent a critically low SOE. Only then will the inverter enter the Standby Mode. Each battery charge may take approximately two hours.

- **Grid Protection:** Available in specific countries. Enables viewing and setting grid protection values.

- **Optimizer Conf.:** Opens the Rapid Shutdown menu, to enable/disable PVRSS.

Information

Select **Information** to display the following options:

<table>
<thead>
<tr>
<th>Versions</th>
<th>Error Log</th>
<th>Warning Log</th>
<th>Hardware IDs</th>
</tr>
</thead>
</table>

- **Versions:** Displays inverter firmware versions:
 - **ID:** The inverter ID.
 - **DSP 1/2:** The DSP digital control board firmware version
 - **CPU:** The communication board firmware version
NOTE
Please have these numbers ready when you contact SolarEdge Support.

- **Error Log**: Displays the last five errors.
- **Warning Log**: Displays the last five warnings.
- **Hardware IDs**: Displays the following HW serial numbers (if exist, and connected to the inverter):
 - **ID**: the inverter's ID
 - **RGM1** (Revenue Grade Meter): A preassembled RGM or any external Energy Meter
 - **RGM2**: A second external Energy Meter
 - **ZB**: ZigBee MAC address
 - **Cell**: MEID (CDMA) or IMEI (GSM)
 - **WiFi**: Wi-Fi MAC address
Status Screens - Operational Mode

During normal operation pressing the external LCD light button turns on the LCD backlight.

Additional presses display the following screens one after the other.

Initial Status

<table>
<thead>
<tr>
<th>Vac [V]</th>
<th>Vdc [V]</th>
<th>Pac [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>240.7</td>
<td>371.9</td>
<td>2349.3</td>
</tr>
</tbody>
</table>

$\text{P_OK: XXX/YYY < S_OK > O N}$

- **Vac [V]:** The AC output voltage
- **Vdc [V]:** The DC input voltage
- **Pac [W]:** The AC output power
- **P_OK: XXX/YYY:** There is a connection to the power optimizers and at least one power optimizer is sending monitoring data. XXX is the number of power optimizers for which telemetries have been received in the last two hours. YYY is the number of paired power optimizers identified during the most recent pairing process. If XXX and YYY are not equal, there may be a problem in one or more power optimizers.
- **S_OK:** The connection to the SolarEdge monitoring platform is successful (appears only if the inverter is connected to the server).
- **ON/OFF:** Indicates the position of the inverter ON/OFF switch.

Main Inverter Status

<table>
<thead>
<tr>
<th>Vac [V]</th>
<th>Vdc [V]</th>
<th>Pac [W]</th>
<th>Fac [Hz]</th>
<th>OPs_Ok</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>240.7</td>
<td>371.9</td>
<td>3210.0</td>
<td>50.0</td>
<td>11</td>
<td>28.2</td>
</tr>
</tbody>
</table>

- **Vac [V]:** The AC output voltage.
- **Vdc [V]:** The DC input voltage.
- **Pac [W]:** The AC output power.
- **Fac [Hz]:** The AC output frequency.
- **OPs_Ok:** Number of optimizers sending telemetries (indicating that they are
paired)

- **Temp [C or F]**: The inverter heat sink temperature

Energy Meter Status

Displays the total energy produced during the last day, month, year and since inverter installation.

<table>
<thead>
<tr>
<th>Day [Wh]</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month [KWh]</td>
<td>0.0</td>
</tr>
<tr>
<td>Year [KWh]</td>
<td>0.0</td>
</tr>
<tr>
<td>Total [KWh]</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- **Day**: since midnight
- **Month**: since 1st of the current month until today (inclusive)
- **Year**: since January 1st until today (inclusive)

If a meter (RGM) is connected to the inverter, the following status screen, showing the power and energy readings, is displayed in addition to the above screen.

If the meter is set to Export + Import, there are two status screens, with the first line displaying: "Export Meter" or "Import Meter". The following is an example of an export meter status:

- **Status**: Displays OK if the meter is communicating with the communication board.
- **<Error message>**: If there is a meter error, it is displayed in this line.
- **Power (W)**: Depending on the meter type connected to the inverter, this line displays the exported or imported power in Watts.
- **Energy (Wh)**: The total energy read by the meter, in Watt/hour. The value displayed in this line depends on the meter type connected to the inverter and its location:
 - If a bidirectional meter is connected at the consumption point, this value is the consumed energy.
 - If the meter is installed at the production connection point, this value is the energy produced by the site.
If the meter is installed at the grid connection point, this value is the energy exported to the grid.

If the inverter is connected to the SolarEdge server, this value will also be displayed in the monitoring platform.

NOTE

This data is accumulated according to an internal real-time clock.

Telemetry Status

This screen displays the last power optimizer telemetry received. The display changes as each power optimizer sends its telemetry.

In order to verify proper installation, the installer may view the Telemetry window for some time in order to observe the power optimizers’ report process.

<table>
<thead>
<tr>
<th>Module: 10288063 1B</th>
<th>Energy [W/h]: 56.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vdc_O [V]: 40.0</td>
<td>Vdc_I [V]: 38.3</td>
</tr>
<tr>
<td>I_in [A]: 7.8</td>
<td>Temp [C]: 28.0</td>
</tr>
</tbody>
</table>

- **Module**: Power optimizer serial number
- **Energy**: power optimizer energy
- **Vdc_O**: Power optimizer output voltage
- **Vdc_I**: Power optimizer input voltage (module voltage)
- **I_in**: Power optimizer input current
- **Temp**: Power optimizer temperature

ID Status

This screen displays the inverter software version and the country to which the inverter is configured.

<table>
<thead>
<tr>
<th>ID: # # # # # # # # # #</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP 1/2: 1.0210/1.0034</td>
</tr>
<tr>
<td>CPU: 0003.19xx</td>
</tr>
<tr>
<td>Country: USA1</td>
</tr>
</tbody>
</table>

- **ID**: The inverter ID.
- **DSP 1/2**: The DSP digital control board firmware version
CPU: The communication board firmware version

Country: the current country setting

Server Communication Status

If the connection method is CDMA (referred to as "Cellular" in the status screens) or GSM, the server screen is replaced with the Cellular or GSM status screens (see Cellular Status on page 78 and GSM Status on page 78).

Server: The method of connection to the SolarEdge monitoring platform.

S_OK: The connection to the SolarEdge monitoring platform is successful (should appear only if the inverter is connected to the server).

Status: Displays OK if the inverter established successful connection and communication with the specified server port/device (LAN, RS485 or ZigBee Plug-in).

xxxxxxxx: Eight-bit Ethernet communication connection status: A string of 1s and 0s is displayed. 1 indicates OK, 0 indicates an error. For a list of the possible errors and how to troubleshoot them, refer to Troubleshooting Communication on page 96.

Error message, according to failure. Refer to https://www.solaredge.com/sites/default/files/troubleshooting_for_se_inverter_installation_guide_addendum_na.pdf.

IP Status

This screen describes the Ethernet configuration: IP, Mask, Gateway and MAC address (Media Access Control) of the Inverter.

ZigBee Status

This screen describes the ZigBee configuration:
RSSI: The receive signal strength indication of the closest ZigBee in the system.
L = low, M = medium, H = high and (-) = no signal.

PAN ID: The ZigBee transceiver PAN ID (Personal Area Network Identification), the ID uniquely represents a device in a Zigbee network.

Ch.: The ZigBee transceiver channel

ID: The ZigBee transceiver ID

MID: The Master ID of the coordinator (master) ZigBee Plug-in. This field is shown only in devices with router (slave) ZigBee cards, and after a successful ZigBee association. If a ZigBee Plug-in is not connected, a **No ZigBee** message is displayed instead of the **MID** field.

Cellular Status

If a cellular (CDMA) Plug-in is connected, this screen replaces the Server status screen:

Server: The method of communication to the SolarEdge monitoring platform. Should display Cell.

Status: Displays OK if the inverter established a successful physical connection to the Cellular Plug-in.

S_OK: The last communication to the SolarEdge monitoring platform was successful (appears if the inverter is connected to the platform).

Sig: The signal strength, received from the Cellular Plug-in. A value between 0-5, (0 = no signal, 5 = excellent signal).

Error message per communication connection status failure

GSM Status

If a GSM Plug-in is connected, this screen replaces the Server status screen:
- **Server**: The method of communication to the SolarEdge monitoring platform. Should display **Cell**.

- **Status**: Displays OK if the inverter established a successful physical connection to the modem.

- **S_OK**: The last communication to the SolarEdge monitoring platform was successful (appears if the inverter is connected to the platform). If S_OK is not displayed, refer to **Status Screens - Operational Mode** on page 74.

- **MNO**: The mobile network operator name

- **Sig**: The signal strength, received from the modem. A value between 0-5, (0 = no signal; 5 = excellent signal)

- **Error message**: per communication connection status failure

Communication Ports Status

<table>
<thead>
<tr>
<th>Dev Prot</th>
<th>##</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS485 - 1< SE > < S > < - ></td>
<td></td>
</tr>
<tr>
<td>ZigBee < SE > < MPS > < - ></td>
<td></td>
</tr>
</tbody>
</table>

- **##**: The total number of slaves detected on the specific port

- **Dev**: The type of device that was configured to a specific port (based on the port’s functionality), as follows:
 - **SE**: SolarEdge device (default)
 - **LGR**: Non-SolarEdge logger
 - **MLT**: Multiple devices, such as meters and batteries
PROT: The protocol type to which the port is set:

For a SolarEdge device:

<table>
<thead>
<tr>
<th>RS485 protocol</th>
<th>ZigBee protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>S: SolarEdge slave</td>
<td>P2P: ZigBee point-to-point</td>
</tr>
<tr>
<td>M: SolarEdge master</td>
<td>MPM: ZigBee multipoint master (for the ZigBee gateway or for load management by the inverter)</td>
</tr>
<tr>
<td></td>
<td>MPS: ZigBee multipoint slave (for a ZigBee router card)</td>
</tr>
</tbody>
</table>

SS: SunSpec - for a non-SolarEdge logger (monitoring and control)

Smart Energy Management Status

This screen is displayed only when Smart Energy Management is enabled. The screen shows energy details of the site:

| Site Limit: 7.0 kW |
| Site Prod: 10.0 kW |
| Site Export: 4.0 kW |
| Self-consume: 6.0 kW |

Site Limit: The limit that was defined for the site

Site Prod: The power produced by the site

Site Export: The power that is fed into the grid

Self-consume: The PV power consumed by the site

Fan Status
This screen is applicable to inverters equipped with external or internal fans, and provides information about the fan status:

```
Fan Status:
Fan 1: Not Working
Fan 2: Operating
```
or

```
Fan Status:
Int: Not Working
Ext: Operating
```

Each fan can have one of the following statuses:

- **Operating**: Fan OK
- **Not Working**: This status may indicate a system error and not necessarily a faulty fan. Turning AC OFF and ON again may clear this status. If the status does not change, replace the fan.

For more information, refer to *External Fan Maintenance and Replacement* on page 101.

Power Control Status
This screen is displayed only when Power Control is enabled (available from communication board (CPU) firmware version 2.7xx/3.7xx and later).

```
PWR CTRL: REMOTE
PWR Limit: 10.04 kW
CosPhi: 0.9
Power Prod: 7000W
```

- **PWR CTRL**: The power control status:
 - **REMOTE**: Communication with the RRCR or smart energy manager is confirmed/validated.
LOCAL - The power is controlled locally (e.g. by a fixed limit), or this inverter limits the PV power production to its relative portion of the feed-in power limit, as a result of disconnected communication with the smart energy manager. If this status appears, check the communication to the smart energy manager or the communication to the meter.

PWR Limit: The inverter maximum output power set by one of the power limiting options:
- RRCR
- Smart energy manager (Feed-in limitation)
- P(f)
- P(U)
- Q(U)

Cos Phi: The ratio between active to reactive power

Power Prod: The power produced by the inverter

Chapter 7: Setting Up Communication

The inverter sends the following information to the monitoring platform:

- Power optimizer information received via the DC power lines (the PV output circuit).
- Inverter information
- Information of any other connected devices.

This chapter describes setting up communication between:

- The inverter and the monitoring platform through the Internet (wired/ wireless), or through a cellular connection.
- Multiple inverters for a master/slave configuration.

Communication setup is not required for power harvesting, however it is needed for using the monitoring platform.

CAUTION!

When connecting the communication cables, make sure that the ON/OFF switch on the Safety Switch is turned OFF, and the AC is turned OFF.

When configuring the communication parameters, make sure that the ON/OFF switch on the Safety Switch is OFF, and the AC is turned ON.

ATTENTION!

Lors de la connexion des câbles de communication, assurez-vous que l'interrupteur MARCHE/ARRÊT à la base de l'onduleur soit en position ARRÊT, et le CA est en position ARRÊT. Lors de la configuration des paramètres de communication, assurez-vous que l'interrupteur MARCHE/ARRÊT soit en position ARRÊT, et le CA est en position MARCHE.

Communication Options

The following types of communication can be used to transfer the monitored information from the inverter to the monitoring platform.

Only communication products offered by SolarEdge are supported.

Always connect the communication options when the relevant devices are powered down - Commercial Gateway, inverter, etc.

Ethernet

Ethernet is used for a LAN connection. For connection instructions refer to .
RS485
RS485 is used for the connection of multiple SolarEdge devices on the same bus in a master-slave configuration. RS485 can also be used as an interface to external devices, such as meters and third party data loggers.

- RS485-1: Enables the connection of multiple devices (inverters/Commercial Gateway) over the same bus, such that connecting only one device to the Internet is sufficient to provide communication services for all the devices on the bus.

- RS485 Plug-in: Purchased separately, the RS485 Plug-in provides an additional RS485 port (referred to as RS485-E) for the inverter for enhanced communications. The plug-in is a 3 pin terminal block which is installed on the communication board. This kit is provided with an installation guide, which should be reviewed prior to connection see, https://www.solaredge.com/sites/default/files/RS485_expansion_kit_installation_guide.pdf

For connection instructions refer to Creating an RS485 Bus Connection on page 91.

Cellular (GSM, CDMA)
This wireless communication option (purchased separately) enables using a cellular connection to connect one or several devices (depending on the data plan used) to the monitoring platform.

Communication Connectors

Two communication glands are used for connection of the various communication options. Each gland has three openings. The table below describes the functionality of each opening. Unused openings should remain sealed.

<table>
<thead>
<tr>
<th>Gland#</th>
<th>Opening</th>
<th>Functionality</th>
<th>Cable size (diameter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (PG16)</td>
<td>One small</td>
<td>External antenna cable</td>
<td>2-4 mm</td>
</tr>
<tr>
<td></td>
<td>Two large</td>
<td>Ethernet connection (CAT5/6), ZigBee, or Cellular</td>
<td>4.5-7 mm</td>
</tr>
<tr>
<td>2 (PG13.5)</td>
<td>All three</td>
<td>RS485</td>
<td>2.5-5 mm</td>
</tr>
</tbody>
</table>

![Communication Glands](image1)

Figure 28: Communication Glands

The communication board has a standard RJ45 terminal block for Ethernet connection, and a 9-pin terminal block for RS485 connection, as shown below:

![Internal connectors](image2)

Figure 29: Internal connectors
Removing the Inverter Cover

If the inverter cover is not already removed, use the following procedure for cover removal.

→ To remove the inverter cover

1. Turn the inverter ON/OFF/P switch to OFF. Wait 5 minutes for the capacitors to discharge.

 WARNING!

 If the inverter was operating properly (power was produced by the power optimizers), the following message is displayed.

 ![DC Voltage Not Safe](image)

 This message is displayed until the DC voltage is safe (50V). Do not open the cover until the voltage is safe or until at least five minutes have passed.

 AVERTISSEMENT!

 La tension de sécurité par défaut est de 50V. *Ne pas ouvrir le couvercle ou les connecteurs DC jusqu’à ce que la tension soit affichée comme sécurisé ou jusqu’à ce que cinq minutes au moins se soient écoulées.*

2. Turn the Safety Switch to OFF.

3. Disconnect the AC to the inverter by turning OFF the circuit breakers on the distribution panel.

4. Open the Allen screws of the inverter cover and carefully pull the cover horizontally before lowering it.

 CAUTION!

 When removing the inverter cover, make sure not to damage the internal components. SolarEdge will not be held responsible for any components damaged as a result of incautious cover removal.

 ATTENTION!

 Lors du retrait du couvercle, assurez-vous de ne pas endommager les composants internes. SolarEdge ne peut être tenue pour responsable des composants endommagés à la suite d’une imprudence dans le retrait du couvercle.
Creating an Ethernet (LAN) Connection

This communication option enables using an Ethernet connection to connect the inverter to the monitoring platform through a LAN.

Ethernet cable specifications:
- Cable type – a shielded Ethernet cable (Cat5/5E STP) may be used
- Maximum distance between the inverter and the router – 100 m/ 330 ft.

Note

If using a cable longer than 10 m / 33 ft in areas where there is a risk of induced voltage surges by lightning, it is recommend to use external surge protection devices.

For details refer to:

Figure 30: Example of Ethernet connection

To connect the Ethernet cable:
1. Remove the inverter cover as described in Removing the Inverter Cover on page 86.
2. Open the communication gland #1.

Caution!

The gland includes a rubber waterproof fitting, which should be used to ensure proper sealing.

Attention!
3. Remove the plastic seal from one of the large opening.

4. Remove the rubber fitting from the gland and insert the CAT5/6 cable through the gland and through the gland opening in the inverter.

5. Push the cable into the cut opening of the rubber fitting.

Figure 31: Rubber fitting

CAT5/6 standard cables have eight wires (four twisted pairs), as shown in the diagram below. Wire colors may differ from one cable to another. You can use either wiring standard, as long as both sides of the cable have the same pin-out and color-coding.

<table>
<thead>
<tr>
<th>RJ45 Pin #</th>
<th>Wire Color(1)</th>
<th>T568B</th>
<th>T568A</th>
<th>10Base-T Signal</th>
<th>100Base-TX Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>White/Orange</td>
<td>White/Green</td>
<td>Transmit+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Orange</td>
<td>Green</td>
<td>Transmit-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>White/Green</td>
<td>White/Orange</td>
<td>Receive+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Blue</td>
<td>Blue</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>White/Blue</td>
<td>White/Blue</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Green</td>
<td>Orange</td>
<td>Received-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>White/Brown</td>
<td>White/Brown</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Brown</td>
<td>Brown</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) The inverter connection does not support RX/TX polarity change. Supporting crossover Ethernet cables depends on the switch capabilities.

Figure 32: Standard cable wiring
6. Use a pre-crimped cable to connect via gland #1 to the RJ45 plug on the inverter’s communication board or, if using a spool of cable, connect as follows:
 a. Insert the cable through gland #1.
 b. Remove the cable’s external insulation using a crimping tool or cable cutter and expose eight wires.
 c. Insert the eight wires into an RJ45 connector, as described in Figure 32.
 d. Use a crimping tool to crimp the connector.
 e. Connect the Ethernet connector to the RJ45 port on the communication board.

 ![Figure 33: The RJ45 Ethernet connection](image)

7. For the switch/router side, use a pre-crimped cable or use a crimper to prepare an RJ45 communication connector: Insert the eight wires into the RJ45 connector in the same order as above (Figure 32).

8. Connect the cable RJ45 connector to the RJ45 port of the Ethernet switch or router. You can connect more than one inverter to the same switch/router or to different switches/routers, as needed. Each inverter sends its monitored data independently to the monitoring platform.

9. The inverter is configured by default to LAN. If reconfiguration is required:
 a. Make sure the ON/OFF switch is OFF.
 b. Turn ON the AC to the inverter by turning ON the circuit breaker on the main distribution panel.
 c. Use the internal user buttons to configure the connection, as described in Communication on page 67.
NOTE

If your network has a firewall, you may need to configure it to enable the connection to the following address:

- Destination Address: prod2.solaredge.com
- TCP Port: 22222, 22221, or 80 (for incoming and outgoing data)

10. Verify the connection, as described in *Verifying the Connection* on page 95.
Creating an RS485 Bus Connection

The RS485 option enables creating a bus of connected inverters, consisting of up to 31 slave inverters and 1 master inverter. Using this option, inverters are connected to each other in a bus (chain), via their RS485 connectors. The first and last inverters in the chain must be terminated as described on page 93.

RS485 wiring specifications:

- **Cable type:** Min. 3-wire shielded twisted pair (a shielded Ethernet cable (Cat5/5E STP) may be used)
- **Wire cross-section area:** 0.2-1 mm²/24-18 AWG (a CAT5 cable may be used)
- **Maximum nodes:** 32
- **Maximum distance between first and last devices:** 1 km/3300 ft.

NOTE

If using a cable longer than 10 m/33 ft in areas where there is a risk of induced voltage surges by lightning, it is recommend to use external surge protection devices. For details refer to: https://www.solaredge.com/sites/default/files/overvoltage_surge_protection_na.pdf.

If grounded metal conduit are used for routing the communication wires, a lightning protection device is not required.

If not using surge protection, connect the grounding wire to the first inverter in the RS485 chain; ensure it is not in contact with other wires. Connect the grounding wire to the grounding bus-bar in the Safety Switch.

NOTE

An additional RS485 port (RS485-Plug-in) is available from SolarEdge, allowing the creation of RS485 Bus Connection; Refer to...

The following sections describe how to physically connect the RS485 bus and how to configure the bus.
To connect the RS485 communication bus:

1. Remove the inverter cover as described in *Removing the Inverter Cover* on page 86.
2. Remove the seal from one of the openings in communication gland #2 and insert the wire through the opening.
3. Pull out the 6-pin RS485 terminal block connector, as shown below:

![Figure 34: The RS485 terminal block](image)

4. Loosen the screws of pins A(+), B(-), and G on the left of the RS485 terminal block (RS485-1 or RS485-2).

![Figure 35: RS485 terminal block](image)

5. Insert the wire ends into the G, A, and B pins shown above. Use Four- or six-wire twisted pair cable for this connection.

 You can use any color wire for each of the A, B and G connections, as long as:
 - The same color wire is used for all A pins the same color for all B pins and the same color for all G pins
 - The wire for G is not from the same twisted pair as A or B.

6. For creating an RS485 bus - connect all B, A and G pins in all inverters.
Figure shows this connection schema:

![Connection Schema Diagram]

Figure 36: Connecting the inverters in a chain

NOTE

Do not cross-connect B, A and G wires.

7. Tighten the terminal block screws.
8. Check that the wires are fully inserted and cannot be pulled out easily.
9. Push the RS485 terminal block firmly all the way into the connector on the right side of the communication board.
10. Terminate the first and last SolarEdge device in the chain by switching a termination DIP-switch inside the inverter to ON (move the left switch up). The switch is located on the communication board and is marked SW7SW1.

![DIP-Switches]

Figure 37: RS485 termination switch
NOTE

Only the first and last SolarEdge devices in the chain should be terminated. The other inverters in the chain should have the termination switch OFF (down position).

11. If not using surge protection, connect the grounding wire to the first inverter in the RS485 chain; make sure the grounding wire is not in contact with other wires. For inverters with a Safety Switch, connect the grounding wire to the grounding bus-bar in the Safety Switch.

→ To connect to the monitoring platform:
1. Designate a single inverter as the connection point between the RS485 bus and the SolarEdge monitoring platform. This inverter will serve as the master inverter.
2. Connect the master to the SolarEdge monitoring platform via the LAN or ZigBee or cellular communication option.
3. Install an RS485 Plug-in in every EV Charging single phase inverter, refer to the 'Installing the RS485 Expansion Module' chapter in the RS485 Expansion Kit Installation Guide and to configure the RS485 bus refer to the following sections.

→ To configure the RS485 communication bus:
All inverters are configured by default as slaves. If reconfiguration is required:
1. Make sure the ON/OFF switch is OFF.
2. Turn ON the AC to the inverter by turning ON the circuit breaker on the main distribution panel.
3. Use the internal buttons to configure the connection. To set the inverter designated as master, select the following in the LCD menus:
 - Communication ➔ Server ➔ LAN, ZigBee, or CDMA
 - RS485- Conf. ➔ Device Type ➔ SolarEdge
 - RS485- Conf. ➔ Protocol ➔ Master
 - RS485- Conf. ➔ Slave Detect

WARNING!

ELECTRICAL SHOCK HAZARD. Do not touch uninsulated wires when the inverter cover is removed.

AVERTISSEMENT!

RISQUE D’ÉLECTROCUTION, ne touchez pas les fils non isolés lorsque le couvercle de l’onduleur est retiré.
The system starts automatic detection of the slave inverters connected to the master inverter. The inverter should report the correct number of slaves. If it does not, verify the connections and terminations.

4. Verify the connection of the master to the monitoring platform, as described in the next section.

Verifying the Connection

After connecting and configuring a communication option, perform the following steps to check that the connection to the monitoring server has been successfully established.

1. Close the inverter cover: Attach the inverter cover and secure it by tightening the screws with a torque of 10.3 N*m/ 7.6 lb.*ft. For proper sealing, first tighten the corner screws and then the two central screws (see also *Figure 26*).

2. If not already ON - Turn ON the AC to the inverter by turning ON the circuit breaker on the main distribution panel and turning on the Safety Switch.

3. Wait for the inverter to connect to the SolarEdge monitoring platform. This may take up to two minutes.

A status screen similar to the following appears on the LCD panel:

```
Vac [V]  Vdc [V]  Pac [w]
240.7 14.1  0.0
P_OK: 000/000 <S_OK> OFF
```

S_OK: Indicates that the connection to the SolarEdge monitoring platform is successful. If **S_OK** is not displayed, refer to *Errors and Troubleshooting on page 96.*
Appendix A: Errors and Troubleshooting

This appendix describes general system problems, and how to troubleshoot them. For further assistance, contact SolarEdge Support. For information on the error and warning messages that appear on the LCD panel when an error occurs, refer to http://www.solaredge.com/sites/default/files/se-inverter-installation-guide-error-codes.pdf and https://www.solaredge.com/sites/default/files/troubleshooting_for_se_inverter_installation_guide_addendum_na.pdf.

Troubleshooting Communication

Troubleshooting Ethernet Communication

When using Ethernet communication, use the Server Communication Status window to identify the location of the error:

```
Server: LAN < S_OK >
Status: < OK >
xxxxxxxxxx < ERROR MESSAGE >
```

xxxxxxxxxx is a string of 1s and 0s showing an eight-bit communication connection status. 1 indicates OK and 0 indicates an error.

<table>
<thead>
<tr>
<th>Bit Location</th>
<th>Error Message</th>
<th>Cause and Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>LAN Disconnected</td>
<td>Physical connection fault. Check the cable pin-out assignment and cable connection. Refer to Creating an Ethernet (LAN) Connection on page 87</td>
</tr>
<tr>
<td>2nd</td>
<td>DHCP Failed, or Invalid DHCP Config</td>
<td>IP settings issue. Check the router and inverter configuration. Consult your network IT.</td>
</tr>
<tr>
<td>3rd</td>
<td>Gateway Ping Failed</td>
<td>Ping to router failed. Check the physical connection to the switch/router. Check that the link LED at the router/switch is lit (indicating phy-link). If OK - contact your network IT, otherwise replace the cable or change it from cross to straight connection.</td>
</tr>
<tr>
<td>4th</td>
<td>G Server Ping Failed</td>
<td>Ping to google.com failed. Connect a laptop and check for internet connection. If internet access is unavailable, contact your IT admin or your internet provider.</td>
</tr>
<tr>
<td>Bit Location</td>
<td>Error Message</td>
<td>Cause and Troubleshooting</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>5th</td>
<td></td>
<td>Ping or connection to SolarEdge server failed. Check the SolarEdge server address, under LAN Conf submenu: Address: prod.solaredge.com</td>
</tr>
<tr>
<td>6th</td>
<td>Server x Ping Failed</td>
<td>Port: 22222 Check with your network administrator whether a firewall or another device is blocking transmission.</td>
</tr>
<tr>
<td>7th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th</td>
<td>Tcp Connect. Failed</td>
<td></td>
</tr>
</tbody>
</table>

1. If the message **Master Not Found** appears, check the connections to the master device and fix if required.

2. If after slave detection the number of slaves displayed in the master under **RS485-X Conf ➔ Slave Detect** is smaller than the actual number of slaves, use one of the following methods to identify missing slaves and troubleshoot connectivity problems:
 - Use the **Long slave Detect** to retry connecting to slaves
 - Analyze the **Slave List** to check for missing slaves, and check their connection

Refer to https://www.solaredge.us/sites/default/files/troubleshooting_undetected_RS485_devices.pdf

Additional Troubleshooting

1. Check that the modem or hub/router is functioning properly.

2. Check that the connection to the internal connector on the communication board is properly done.

3. Check that the selected communication option is properly configured.

4. Use a method independent of the SolarEdge device to check whether the network and modem are operating properly. For example, connect a laptop to the Ethernet router and connect to the Internet.

5. Check whether a firewall or another type of network filter is blocking communication.
Power Optimizer Troubleshooting

If the inverter status screen indicates that not all power optimizers are paired or not all are reporting (P_OK xxx/yyy, and x<y), those optimizers can be identified through the LCD. Refer to https://www.solaredge.us/sites/default/files/non.reporting.power.optimizers.pdf

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause and troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pairing failed</td>
<td>Power optimizers are shaded. If you connected the inverter to the monitoring platform, retry pairing remotely (during sunlight). Make sure to leave the inverter ON/OFF switch ON and that S_OK appears in the status screen.</td>
</tr>
<tr>
<td>String voltage is 0V</td>
<td>Power optimizer(s) output is disconnected. Connect all power optimizer outputs.</td>
</tr>
<tr>
<td>String voltage not 0V but lower than number of optimizers</td>
<td>Power optimizer(s) not connected in the string. Connect all power optimizers. Module(s) not connected properly to power optimizer inputs (not applicable to smart modules). Connect the modules to the optimizer inputs. String reverse polarity. Check string polarity using a voltmeter and correct if needed.</td>
</tr>
</tbody>
</table>
Problem | Possible cause and troubleshooting
---|---
String voltage is higher than number of optimizers | Extra power optimizer(s) connected in the string (not applicable to smart modules).
Check if an extra power optimizer is connected in the string. If not – proceed to next solution.

WARNING!
If the measured voltage is too high, the installation may not have a safe low voltage. PROCEED WITH CARE! A deviation of ±1% per string is reasonable.

AVERTISSEMENT!
Si la tension mesurée est trop haute, la tension basse de sécurité pourrait manquer dans l’installation. REDOUBLEZ DE PRECAUTION. Une déviation de ± 1% par string est raisonnable.

A module is connected directly to the string, without a power optimizer (not applicable to smart modules).
Verify that only power optimizers are connected in the string and that no module outputs are connected without a power optimizer. If the problem persists, proceed to the next step.

Power optimizer(s) malfunction.
1. Disconnect the wires connecting the power optimizers in the string.
2. Measure the output voltage of each power optimizer to locate the power optimizer that does not output 1V safety voltage. If a malfunctioning power optimizer is located, check its connections, polarity, module, and voltage.
3. Contact SolarEdge Support. Do not continue before finding the problem and replacing the malfunctioning power optimizer. If a malfunction cannot be bypassed or resolved, skip the malfunctioning power optimizer, thus connecting a shorter string.
Appendix B: Mechanical Specifications

Figure 38: Three phase inverter with bracket - front, side and rear views

Figure 39: Inverter mounting bracket
Appendix C: External Fan Maintenance and Replacement

The inverters have two fans: one is internal and the other is accessible from the outside of the inverter.

The fans are referred to as “Fan 1” and “Fan 2”:
- In three phase inverters - Fan 1 is internal, Fan 2 is external
- In single phase 10-11.4kW inverters - Fan 1 is external, Fan 2 is internal
- In single phase 7.6kW inverter has one internal fan, referred to as Fan 1.

A fan replacement kit is available from SolarEdge.

Fan Maintenance
1. At least once a year, open the fan screen and clean the accumulated dust using a brush.
2. Check the Fan Status screen on the LCD (refer to Fan Status on page 81).
3. If one of the following occurs, replace the fan as described below:
 - When the fan stops operating
 - Fan status is Not Working: Before replacing the fan, turn the inverter AC OFF and ON and check if the status is cleared
 - The following Error is displayed:
 - In Three Phase inverters: Fan 2 Failure
 - In single Phase 10-11.4 kW inverters: Fan 1 Failure
External Fan Replacement

1. Turn OFF the inverter ON/OFF switch, and wait until the LCD indicates that the DC voltage is safe (<50V), or wait five minutes before continuing to the next step.

 WARNING!
 If you cannot see the inverter panel, or if a malfunction is indicated on the LCD panel, wait five minutes for the input capacitors of the inverter to discharge.

 AVERTISSEMENT!
 Si vous ne pouvez pas voir l’écran de l’onduleur ou si un dysfonctionnement est indiqué sur l’écran LCD, attendez cinq minutes pour que les condensateurs d’entrée de l’onduleur soient déchargés.

2. Turn OFF the Safety Switch and the AC breaker of the distribution panel.
3. Use a standard screwdriver to unfasten the single screw of the fan cover.
4. Open the fan door.

 ![Figure 41: Fan door open](image)

5. Disconnect the fan connector and remove the fan.

 ![Figure 42: Fan connector](image)

6. Connect the fan connector to the new fan.
7. Close the fan door and fasten the cover screw.
8. After powering up the inverter, check the fan status screen as described in Fan Status on page 81.
Appendix D: Replacing and Adding System Components

This appendix includes replacement procedures for the SolarEdge system components. For inverter or Safety Switch replacement, typically only the part to be replaced is supplied (not both inverter and Safety Switch). In this case, the Safety Switch should be disconnected from the inverter as described herein.

NOTE
If you are permanently disassembling the installation or part of it, make sure to use the disposal methods dictated by local regulations.

CAUTION!
Do not remove the six screws on the DC conduit metal panel as it may harm the inverter sealing and void the warranty.

ATTENTION!
Ces vis ne doivent pas être retirées. Les enlever est susceptible d’endommager l’étanchéité de l’onduleur et annuler la validité de la garantie.

Replacing an Inverter

1. Turn OFF the Safety Switch (if applicable).

2. Turn OFF the inverter ON/OFF switch, and wait until the LCD indicates that the DC voltage is safe (<50V), or wait five minutes before continuing to the next step.

WARNING!
If you cannot see the inverter panel, or if a malfunction is indicated on the LCD panel, wait five minutes for the input capacitors of the inverter to discharge.

AVERTISSEMENT!
Si vous ne pouvez pas voir l’écran de l’onduleur ou si un dysfonctionnement est indiqué sur l’écran LCD, attendez cinq minutes pour que les condensateurs d’entrée de l’onduleur soient déchargés.

3. Disconnect the AC to the inverter by turning OFF the circuit breakers on the distribution panel.

4. Open the inverter cover as described in *Removing the Inverter Cover* on page 86.
5. Disconnect the DC and AC wires from the inverter. If there are ferrite beads on the DC and AC wires in the inverter, open the beads and set them aside.

6. Unscrew the two conduit nuts in the inverter securing the Safety Switch to the inverter.

![Figure 43: Conduit nuts](image)

7. Remove the screws securing the inverter to the mounting bracket and remove the inverter from the mounting bracket.

NOTE

If you remove the old inverter and do not immediately install a new one, then:

- Lock the Safety Switch in the OFF position using a lock on the switch.
- Use insulation tape to isolate each of the AC and DC wires.
- Seal the open conduits using duct tape.

8. Place the new inverter on the mounting bracket; insert the screws securing the inverter to the mounting bracket.

9. Screw the two conduit nuts in the inverter securing the Safety Switch to the inverter.

10. Connect the DC and AC wires to the inverter.

11. If ferrite beads were removed from the DC and AC wires, place them on the wires and close them. Make sure the DC labeled ferrite bead is placed on the DC wires and the AC labeled ferrite bead is placed on the AC wires.

12. Close the Safety Switch cover and the inverter cover.

13. Perform the commissioning steps as described in *Commissioning the Installation* on page 52.
Replacing the Safety Switch

Removing the Safety Switch

1. Turn OFF the inverter ON/OFF switch, and wait until the LCD indicates that the DC voltage is safe (<50V), or wait five minutes before continuing to the next step.

WARNING!

If you cannot see the inverter panel, or if a malfunction is indicated on the LCD panel, wait five minutes for the input capacitors of the inverter to discharge.

AVERTISSEMENT!

Si vous ne pouvez pas voir l’écran de l’onduleur ou si un dysfonctionnement est indiqué sur l’écran LCD, attendez cinq minutes pour que les condensateurs d'entrée de l’onduleur soient déchargés.

2. Turn OFF the Safety Switch and the AC breaker of the distribution panel.

3. Open the inverter cover.

4. Disconnect the DC and AC wires from the inverter. If there are ferrite beads on the DC and AC wires in the inverter, open them and set aside.

5. If you replace a Safety Switch with a built-in Energy Meter, disconnect the RS485 connector from the inverter communication board.

6. Unscrew the two conduit nuts in the inverter securing the Safety Switch to the inverter, as shown below:

![Figure 44: Disconnecting the conduits](image)

7. Open the Safety Switch cover and disconnect the DC and AC wires. Unscrew the two conduit nuts securing the Safety Switch to the external conduits.

8. If the Safety Switch bracket is screwed to the wall, release it.

9. Carefully remove the Safety Switch with its mounting bracket from the wall.
Installing a New Safety Switch

1. Open the conduit drill guides of the new Safety Switch (refer to *Opening Conduit Drill Guides* on page 35).
2. Position the new Safety Switch below the inverter and from the inside of the inverter grab the AC and DC wires extending from the switch conduits.
3. Attach the Safety Switch with its bracket to the wall and slightly close the screws. Do not over tighten.
4. Securely screw the two conduit nuts onto the conduit ends in the inverter. Verify proper conduit sealing.

Connecting the Safety Switch to the Inverter

1. If ferrite beads were removed from the DC and AC wires, place them on the wires and close them. Make sure the DC labeled ferrite bead is placed on the DC wires and the AC labeled ferrite bead is placed on the AC wires.
2. Connect the DC, as follows:
 - Connect the red wire to any of the DC+ terminals in the inverter.
 - Connect the black wire to any of the DC- terminals in the inverter.

 ![DC terminals](image)

 Figure 45: DC terminals

3. Connect the AC wires according to the labels on the AC terminal blocks, as follows:
4. Tighten the screws of each terminal with a torque of 0.88-1.1 lb.*ft / 1.2-1.5 N*m.

5. If you replaced a Safety Switch with a built-in Energy Meter, connect the RS485 connector from the Energy Meter to the inverter communication board.

6. Verify that there are no unconnected wires at the output of the Safety Switch and that any unused terminal screws are tightened.

7. Connect the DC and AC wires to the Safety Switch. Refer to *Connecting the AC and the Strings to the Safety Switch* on page 42.

8. If you replace a Safety Switch with a built-in Energy Meter, connect the RS485 connector to the inverter communication board.

9. Ensure proper conduit sealing; inspect the entire conduit run and use standard conduit sealants to avoid water penetration.
Adding, Removing, or Replacing Power Optimizers

1. Turn OFF the inverter ON/OFF switch, and wait until the LCD indicates that the DC voltage is safe (<50V), or wait five minutes before continuing to the next step.

 WARNING!
 If you cannot see the inverter panel, or if a malfunction is indicated on the LCD panel, wait five minutes for the input capacitors of the inverter to discharge.

 AVERTISSEMENT!
 Si vous ne pouvez pas voir l’écran de l’onduleur ou si un dysfonctionnement est indiqué sur l’écran LCD, attendez cinq minutes pour que les condensateurs d’entrée de l’onduleur soient déchargés.

2. Turn OFF the Safety Switch.
3. Disconnect and connect the necessary power optimizers.
4. Perform pairing and other procedures described in *Commissioning the Installation* on page 52 on all inverters to which power optimizers were added or from which power optimizers were removed.
5. In the monitoring platform, use the Replace button in the logical layout tab (in site Admin). Replace the serial number of the removed power optimizer with the serial number of the newly installed power optimizer. Refer to https://www.solaredge.com/sites/default/files/se-monitoring-portal-site-admin.pdf
Appendix E: Determining the Circuit Breaker Size

Revision History
- Version 1.0 February 2019: first release

Introduction
Inverters should be protected by circuit breakers. This document describes how to determine which circuit breaker to use in three phase commercial installations.

Using Transformers in Commercial Three Phase Inverter Installations
Using transformers in a commercial installation is optional. In most cases a transformer is used to connect the installation to the medium voltage power grid. The following figure illustrates a typical transformer and commercial three phase inverter installation topology.

Figure 47: Typical transformer and commercial three phase inverter installation topology
There are many considerations for selecting the suitable transformer and its associated current limiting devices such as circuit breakers and fuses. The considerations must include at least the following:

- The transformer should be designed for a typical PV system production profile: high daytime loads with no loads at night.
- The current limiting devices should protect the electrical circuits and the inverters from the excess current created by an overload, or a short circuit. If a short circuit or other overcurrent occurs, the current limiting devices should block the current flow to the circuit, thus preventing damage to the electrical circuits and the inverters.

The circuit breakers and the fuses should comply with the transformer manufacturer recommendations and with the relevant sections in standards such as IEC 60909, IEC 60364, UL 508A and NEC 2017.

Some manufacturers provide detailed information about the transformer short circuit calculation procedure, and its effect on the selection of circuit breakers and fuses at the different hierarchical levels of the installation topology (see Figure 47).

For an example of a calculation, refer to:
- Guidelines on the Short Circuit Current Rating for Industrial Control Panels
- Short-circuit current rating (SCCR) of industrial control panels

To ensure that the circuit breaker and fuses trip as expected, follow their manufacturers' recommendations, especially with respect to the various derating considerations.

NOTE
Transformer procurement, installation, maintenance and support are the responsibility of the installer. Damage to the inverter due to incorrect transformer installation, or use of a transformer that is incompatible with the SolarEdge system will render the SolarEdge warranty invalid.

NOTE
Transformer procurement, installation, maintenance and support are the responsibility of the installer. Damage to the inverter due to incorrect transformer installation, or use of a transformer that is incompatible with the SolarEdge system will render the SolarEdge warranty invalid.
Determining the Size of an Inverter Circuit Breaker

This section explains how to determine the rate of a circuit breaker next to an inverter. For an example of an inverter with a circuit breaker next to it see Figure 47.

Ensure you have the following parameters before determining the circuit breaker size:

- The inverter’s maximum continuous output current as appears in the datasheet.
- Factor for the installation’s country. This factor is dictated by regulation, applicable standards or common practice and is usually 1.25.

To determine the size of an inverter circuit breaker:

1. Multiply the inverter’s maximum continuous output current by the factor.
 For example, 40A x 1.25 = 50A

2. Round up the rated size, as calculated in step 1, to the closest standard circuit breaker size. See Circuit Breaker Criteria table below for standard sizes suitable for SolarEdge three phase inverters.

 NOTE
 If the result has a decimal fraction smaller than 0.5 round it down.

3. To ensure that the selected circuit breaker trips as expected, at minimum consider the following:
 - The circuit breaker rated voltage.
 - Temperature de-rating due to both close proximity of other circuit breakers and the effect of ambient temperature on the distribution board.
 - De-rating due to permanent load.

If the de-rated current of the selected circuit breaker is lower than the maximum output current of the inverter, consider selecting a circuit breaker that is designed for a higher rated current, or reducing the temperature de-rating effect by increasing the distance between adjacent circuit breakers.

NOTE

- Make sure to select cables that are suitable for the environmental conditions, the operating voltage and the selected circuit breaker.

- Three or four pole circuit breakers are required. It is recommended to use a four pole circuit breaker when applicable.

- It is recommended to use a circuit breaker with tripping characteristic B or C.
<table>
<thead>
<tr>
<th>Inverter</th>
<th>Max. Continuous Output Current (per Phase)</th>
<th>Recommended Circuit Breaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE12.5K</td>
<td>20A</td>
<td>25A</td>
</tr>
<tr>
<td>SE14.4KUS</td>
<td>40A</td>
<td>50A</td>
</tr>
<tr>
<td>SE15K</td>
<td>23A</td>
<td>32A</td>
</tr>
<tr>
<td>SE16K</td>
<td>25.5A</td>
<td>32A</td>
</tr>
<tr>
<td>SE17K</td>
<td>26A</td>
<td>32A</td>
</tr>
<tr>
<td>SE25K</td>
<td>38A</td>
<td>50A</td>
</tr>
<tr>
<td>SE27.6K</td>
<td>40A</td>
<td>50A</td>
</tr>
<tr>
<td>SE30K</td>
<td>36.5A</td>
<td>50A</td>
</tr>
<tr>
<td>SE33.3K</td>
<td>40A</td>
<td>50A</td>
</tr>
<tr>
<td>SE43.2KUS</td>
<td>120A</td>
<td>150A</td>
</tr>
<tr>
<td>SE50K</td>
<td>76A</td>
<td>100A</td>
</tr>
<tr>
<td>SE55K</td>
<td>80A</td>
<td>100A</td>
</tr>
<tr>
<td>SE66.6K</td>
<td>80A</td>
<td>100A</td>
</tr>
<tr>
<td>SE66.6KUS</td>
<td>80A</td>
<td>100A</td>
</tr>
<tr>
<td>SE75K</td>
<td>120A</td>
<td>150A</td>
</tr>
<tr>
<td>SE82.8K</td>
<td>120A</td>
<td>150A</td>
</tr>
<tr>
<td>SE100K</td>
<td>120A</td>
<td>150A</td>
</tr>
<tr>
<td>SE100KUS</td>
<td>120A</td>
<td>150A</td>
</tr>
</tbody>
</table>
Technical Specifications - Single Phase Inverters (North America)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal AC power output</td>
<td>3000</td>
<td>3800</td>
<td>5000</td>
<td>6000</td>
<td>7600</td>
<td>9980 @ 208V</td>
<td>10000 @ 240V</td>
<td>11400</td>
</tr>
<tr>
<td>Maximum AC power output</td>
<td>3300</td>
<td>4150</td>
<td>5400 @ 208</td>
<td>6000</td>
<td>8350</td>
<td>10800 @ 208V</td>
<td>10950 @ 240V</td>
<td>12000</td>
</tr>
<tr>
<td>AC output voltage min.-nom.-max.(^{1})</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>183-208-229 Vac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC output voltage min.-nom.-max.(^{1})</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>211-240-264 Vac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC frequency min.-nom.-max(^{1})</td>
<td>59.3 – 60 – 60.5 (with HI country setting: 57 – 60 – 60.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>Max. output fault current and duration @208V</td>
<td>N/A</td>
<td>N/A</td>
<td>26 / 20</td>
<td>N/A</td>
<td>N/A</td>
<td>48 / 20</td>
<td>N/A</td>
<td>A / ms</td>
</tr>
<tr>
<td>Max. output fault current and duration @240V</td>
<td>14 / 20</td>
<td>17.5 / 20</td>
<td>23 / 20</td>
<td>27.5 / 20</td>
<td>40 / 20</td>
<td>42 / 20</td>
<td>48 / 20</td>
<td>A / ms</td>
</tr>
<tr>
<td>Max. continuous output current</td>
<td>12.5</td>
<td>16</td>
<td>24 @208V</td>
<td>25</td>
<td>32</td>
<td>48 @ 208V</td>
<td>47.5</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21 @240V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{1}\)For other regional settings, please contact SolarEdge support.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inrush current AC (Peak/ Duration)</td>
<td>2.8/20</td>
<td></td>
<td></td>
<td></td>
<td>3.3/20</td>
<td></td>
<td></td>
<td>Aac (rms) / ms</td>
</tr>
<tr>
<td>Max. output overcurrent protection</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Power factor range</td>
<td>1 (adjustable from -0.85 to +0.85)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFDI threshold</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Total harmonic distortion</td>
<td><3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility monitoring, islanding protection, country configurable thresholds</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INPUT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum DC power (Module STC)</td>
<td>4050</td>
<td>5100</td>
<td>6750</td>
<td>8100</td>
<td>10250</td>
<td>13500</td>
<td>15350</td>
<td>W</td>
</tr>
<tr>
<td>Transformer-less, ungrounded</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum input voltage</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vdc</td>
</tr>
<tr>
<td>Nominal DC input voltage</td>
<td>325 @ 208V / 350 @ 240V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum input current (1)</td>
<td>9.5</td>
<td>13</td>
<td>16.5 @ 208V</td>
<td>18</td>
<td>23</td>
<td>33 @ 208V</td>
<td>30.5 @ 240V</td>
<td>34.5</td>
</tr>
</tbody>
</table>

(1) A higher current source may be used; the inverter will limit its input current to the values stated.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum input short circuit current</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adc</td>
</tr>
<tr>
<td>Maximum input source back-feed current</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Reverse-polarity protection</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground-fault isolation detection</td>
<td>600 kΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sensitivity</td>
</tr>
<tr>
<td>Maximum inverter efficiency</td>
<td>97.7</td>
<td>98.2</td>
<td>98.3</td>
<td>98.3</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>%</td>
</tr>
<tr>
<td>CEC weighted efficiency</td>
<td>97.5</td>
<td>98</td>
<td>97 @ 208V</td>
<td>97.5</td>
<td>97 @ 208V</td>
<td>97.5 @ 240V</td>
<td>97.5</td>
<td>%</td>
</tr>
<tr>
<td>Night time power consumption</td>
<td>< 2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 4</td>
</tr>
</tbody>
</table>

SolarEdge Three Phase System Installation Guide MAN-01-00002-4.3
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDITIONAL FEATURES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported communication interfaces</td>
<td>RS485, Ethernet, ZigBee (optional), cellular (optional)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revenue Grade Data, ANSI C12.20</td>
<td>Optional(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid Shutdown – NEC 2014 and 2017 690.12</td>
<td>Automatic Rapid Shutdown upon AC Grid Disconnect(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STANDARD COMPLIANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>UL1741, UL1741 SA, UL1699B, CSA 22.2, Canadian AFCI according to T.I.L M-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid connection standards</td>
<td>IEEE1547, Rule 21, Rule 14 (HI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissions</td>
<td>FCC part15 class B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RoHS</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALLATION SPECIFICATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC output conduit size / AWG range</td>
<td>¾” minimum / 16-6 AWG</td>
<td>3/4” minimum / 8-3 AWG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC input conduit size / # of strings / AWG range</td>
<td>¾” minimum / 1-2 strings / 16-6 AWG</td>
<td>3/4” minimum / 1-3 strings / 14-6 AWG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions (H x W x D)</td>
<td>21 x 12.5 x 7.2 / 540 x 315 x 184</td>
<td>21 x 12.5 x 10.5 / 540 x 315 x 260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1)Revenue grade inverter P/N: SExxxxA-US000NNR2 (for SE7600 inverter: US002NNR2)

(2)P/Ns SExxxxA-US0xxxxx have Manual Rapid Shutdown for NEC 2014 compliance (NEC 2017 compliance with outdoor installation)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (H x W x D) with Safety Switch</td>
<td>30.5 x 12.5 x 7.2 / 775 x 315 x 184</td>
<td>30.5 x 12.5 x 10.5 / 775 x 315 x 260</td>
<td>in/mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>44.7 / 20.2</td>
<td>47.7/21.7</td>
<td>82.1 / 37.5</td>
<td>lb/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight with Safety Switch</td>
<td>51.2/23.2</td>
<td>54.7/24.7</td>
<td>88.4 / 40.1</td>
<td>lb/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling</td>
<td>Natural Convection</td>
<td>Natural convection and internal fan (user replaceable)</td>
<td>Fans (user replaceable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise (typical)</td>
<td>< 25</td>
<td>< 50</td>
<td>dBa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum and maximum operating temperature range</td>
<td>-13 to +140 / -25 to +60 (-40 to +60 version available(^{(2)}))</td>
<td>°F/°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-13 to +140/ -25 to +60</td>
<td>°F/°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection rating</td>
<td>NEMA 3R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum altitude</td>
<td>6562 / 2000</td>
<td></td>
<td>ft / m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating humidity – non condensing</td>
<td>< 95</td>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommended OCPD size per grid (you may use a larger size than that recommended but never above 40A):

\(^{(1)}\) SolarEdge’s 5kW and 6kW inverters operate at full power and full currents up to a temperature of 120°F/50°C. The inverters may be used above this temperature with reduced ratings. For more information, refer to http://www.solaredge.com/files/pdfs/se-temperature-derating-note-na.pdf.

<table>
<thead>
<tr>
<th>Inverter</th>
<th>Maximum Output Current (A)</th>
<th>Maximum Suggested Fuse Rating (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>208 VAC</td>
</tr>
<tr>
<td>SE3000A-US</td>
<td>12.5</td>
<td>---</td>
</tr>
<tr>
<td>SE3800A-US</td>
<td>16</td>
<td>---</td>
</tr>
<tr>
<td>SE5000A-US</td>
<td>24 @208V 21 @240V</td>
<td>30</td>
</tr>
<tr>
<td>SE6000A-US</td>
<td>25</td>
<td>---</td>
</tr>
<tr>
<td>SE7600-US</td>
<td>32</td>
<td>---</td>
</tr>
<tr>
<td>SE10000-US</td>
<td>48 @ 208V 42@ 240V</td>
<td>60</td>
</tr>
<tr>
<td>SE11400-US</td>
<td>47.5</td>
<td>---</td>
</tr>
</tbody>
</table>

Default Trip Limits and Times According to IEEE1547

NOTE

The inverters are equipped with adjustable utility protective function set-points, and can be aggregated above 30kW on a single Point of Common Connection. The default settings are in compliance with IEEE1547. Utility authorization is required to change these set-points.

<table>
<thead>
<tr>
<th>Voltage Range (% of Base Voltage)</th>
<th>Maximum Clearing Time (Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V < 50%</td>
<td>0.16</td>
</tr>
<tr>
<td>50% < V < 88%</td>
<td>2.00</td>
</tr>
<tr>
<td>110% < V < 120%</td>
<td>1.00</td>
</tr>
<tr>
<td>V > 120%</td>
<td>0.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency Range (Hz)</th>
<th>Maximum Clearing Time (Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 60.5</td>
<td>0.16</td>
</tr>
<tr>
<td>< 59.3 (Hawaii – 57)</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Safety Switch

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Single Phase 3 - 7.6 kW</th>
<th>Single Phase 10 - 11.4 kW</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum DC voltage</td>
<td>600</td>
<td>500</td>
<td>Vdc</td>
</tr>
<tr>
<td>Maximum DC current</td>
<td>32</td>
<td>40</td>
<td>Adc</td>
</tr>
<tr>
<td>Nominal AC voltage</td>
<td>208/ 240</td>
<td></td>
<td>Vac</td>
</tr>
<tr>
<td>Maximum AC current</td>
<td>32</td>
<td>50</td>
<td>Aac</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-40 to 149 / -40 to +65</td>
<td>-40 to 140 / -40 to +60</td>
<td>°F / °C</td>
</tr>
<tr>
<td>Weight</td>
<td>5.29 / 2.4</td>
<td>6.6 / 3.0</td>
<td>lb/kg</td>
</tr>
</tbody>
</table>
Technical Specifications - Three Phase Inverters (North America)

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>SE9KUS</th>
<th>SE10KUS</th>
<th>SE14.4KUS</th>
<th>SE20KUS</th>
<th>SE30KUS</th>
<th>SE33.3KUS</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated AC power output</td>
<td>9000</td>
<td>10000</td>
<td>14400</td>
<td>20000</td>
<td>30000</td>
<td>33300</td>
<td>VA</td>
</tr>
<tr>
<td>Maximum AC power output</td>
<td>9000</td>
<td>10000</td>
<td>14400</td>
<td>20000</td>
<td>30000</td>
<td>33300</td>
<td>VA</td>
</tr>
<tr>
<td>AC Output Line Connections</td>
<td>4-wire WYE (L1-L2-L3-N) plus PE or 3 wire Delta</td>
<td>4-wire WYE (L1-L2-L3-N) plus PE</td>
<td>4-wire WYE (L1-L2-L3-N) plus PE or 3 wire Delta</td>
<td>4-wire WYE (L1-L2-L3-N) plus PE</td>
<td>4-wire WYE (L1-L2-L3-N) plus PE</td>
<td>4-wire WYE (L1-L2-L3-N) plus PE</td>
<td></td>
</tr>
<tr>
<td>AC output voltage minimum-nominal-maximum (L-N)<sup>(1)</sup></td>
<td>105-120-132.5</td>
<td>244-277-305</td>
<td>105-120-132.5</td>
<td>244-277-305</td>
<td>244-277-305</td>
<td>244-277-305</td>
<td>Vac</td>
</tr>
<tr>
<td>AC output voltage minimum-nominal-maximum (L-L)<sup>(1)</sup></td>
<td>183-208-229</td>
<td>422.5-480-529</td>
<td>183-208-229</td>
<td>422.5-480-529</td>
<td>422.5-480-529</td>
<td>422.5-480-529</td>
<td>Vac</td>
</tr>
<tr>
<td>AC frequency min-nom-max<sup>1</sup></td>
<td>59.3 - 60 - 60.5 (with HI country setting 57 - 60 - 60.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>Max. continuous output current (per Phase)</td>
<td>25</td>
<td>12</td>
<td>40</td>
<td>24</td>
<td>36.5</td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td>Max. output fault current and duration</td>
<td>73 / 150</td>
<td>51 / 150</td>
<td>92 / 150</td>
<td>73 /150</td>
<td>88 / 150</td>
<td>92 / 150</td>
<td>A / mS</td>
</tr>
<tr>
<td>Inrush current AC (Peak / Duration)</td>
<td>2.6 / 20</td>
<td></td>
<td>4 / 20</td>
<td>4.2 / 20</td>
<td>4.2 / 20</td>
<td></td>
<td>Aac(rms) / ms</td>
</tr>
</tbody>
</table>

⁽¹⁾For other regional settings please contact SolarEdge Support.
<table>
<thead>
<tr>
<th></th>
<th>SE9KUS</th>
<th>SE10KUS</th>
<th>SE14.4KUS</th>
<th>SE20KUS</th>
<th>SE30KUS</th>
<th>SE33.3KUS</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. back-feed current</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Power factor range</td>
<td>1 (adjustable from -0.8 to +0.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFDI threshold</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Total harmonic distortion</td>
<td>< 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Utility monitoring, islanding protection, country configurable set points</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum DC power</td>
<td>12150</td>
<td>13500</td>
<td>19400</td>
<td>27000</td>
<td>40500</td>
<td>45000</td>
<td>W</td>
</tr>
<tr>
<td>Transformer-less, ungrounded</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum input voltage DC to Gnd</td>
<td>250</td>
<td>490</td>
<td>300</td>
<td>490</td>
<td>490</td>
<td>490</td>
<td>Vdc</td>
</tr>
<tr>
<td>Maximum input voltage DC+ to DC-</td>
<td>500</td>
<td>980</td>
<td>600</td>
<td>980</td>
<td>980</td>
<td>980</td>
<td>Vdc</td>
</tr>
<tr>
<td>Nominal input voltage DC to Gnd</td>
<td>200</td>
<td>420</td>
<td>200</td>
<td>420</td>
<td>420</td>
<td>420</td>
<td>Vdc</td>
</tr>
<tr>
<td>Nominal input voltage DC+ to DC-</td>
<td>400</td>
<td>840</td>
<td>400</td>
<td>840</td>
<td>840</td>
<td>840</td>
<td>Vdc</td>
</tr>
<tr>
<td>Maximum input current</td>
<td>26.5</td>
<td>13.5</td>
<td>38</td>
<td>26.5</td>
<td>39</td>
<td>40</td>
<td>Adc</td>
</tr>
<tr>
<td>Maximum short circuit current</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adc</td>
</tr>
<tr>
<td>Reverse-polarity protection</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground-fault isolation detection</td>
<td>1 MΩ Sensitivity</td>
<td>1 MΩ Sensitivity</td>
<td>350 kΩ Sensitivity</td>
<td>1 MΩ Sensitivity</td>
<td>350 kΩ Sensitivity^1</td>
<td>350 kΩ Sensitivity^1</td>
<td></td>
</tr>
</tbody>
</table>

^1^Where permitted by local regulations
<table>
<thead>
<tr>
<th></th>
<th>SE9KUS</th>
<th>SE10KUS</th>
<th>SE14.4KUS</th>
<th>SE20KUS</th>
<th>SE30KUS</th>
<th>SE33.3KUS</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum inverter efficiency</td>
<td>97.1</td>
<td>98.2</td>
<td>97</td>
<td>98.1</td>
<td>98.5</td>
<td>98.5</td>
<td>%</td>
</tr>
<tr>
<td>CEC weighted efficiency</td>
<td>96.5</td>
<td>98</td>
<td>97</td>
<td>98</td>
<td>98.5</td>
<td>98.5</td>
<td>%</td>
</tr>
<tr>
<td>Night-time power consumption</td>
<td>< 3</td>
<td>< 3</td>
<td>< 4</td>
<td>< 3</td>
<td>< 4</td>
<td>< 4</td>
<td>W</td>
</tr>
</tbody>
</table>
ADDITIONAL FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>SE9KUS</th>
<th>SE10KUS</th>
<th>SE14.4KUS</th>
<th>SE20KUS</th>
<th>SE30KUS</th>
<th>SE33.3KUS</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported communication interfaces</td>
<td>RS485, Ethernet, ZigBee(optional)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid Shutdown – NEC 2014 and 2017 690.12</td>
<td>Automatic Rapid Shutdown upon AC grid disconnect(^{(1)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS485 Surge Protection</td>
<td>Supplied with the inverter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart Energy Management</td>
<td>Export Limitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STANDARD COMPLIANCE

<table>
<thead>
<tr>
<th>Category</th>
<th>SE9KUS</th>
<th>SE10KUS</th>
<th>SE14.4KUS</th>
<th>SE20KUS</th>
<th>SE30KUS</th>
<th>SE33.3KUS</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>UL1741, UL1741 SA, UL1699B, CSA 22.2, Canadian AFCI according to T.I.L. M-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid connection standards</td>
<td>IEEE1547, Rule 21, Rule 14 (HI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissions</td>
<td>FCC part15 class B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RoHS</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTALLATION SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>SE9KUS</th>
<th>SE10KUS</th>
<th>SE14.4KUS</th>
<th>SE20KUS</th>
<th>SE30KUS</th>
<th>SE33.3KUS</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC output conduit size / AWG range</td>
<td>3/4” minimum / 12-6 AWG</td>
<td>3/4” minimum / 12-6 AWG</td>
<td>3/4” minimum / 8-4 AWG</td>
<td>3/4” minimum / 12-6 AWG</td>
<td>3/4” minimum / 8-4 AWG</td>
<td>3/4” minimum / 8-4 AWG</td>
<td></td>
</tr>
<tr>
<td>DC input conduit size / # of inputs/ AWG range</td>
<td>3/4” minimum / 12-6 AWG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of DC inputs</td>
<td>2 pairs</td>
<td>3 pairs (with fuses on plus & minus)(^{(2)})</td>
<td>2 pairs</td>
<td>3 pairs(with fuses on plus & minus)(^{1})</td>
<td>3 pairs(with fuses on plus & minus)(^{1})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\)P/N SE9K-US0xxxxxx has Manual Rapid Shutdown for NEC 2014 compliance (NEC 2017 compliance with outdoor installation)

\(^{(2)}\)Field replacement kit for 1 pair of inputs P/N: DCD-3PH-1TBK. Field replacement kit for 3 pairs of fuses and holders P/N: DCD-6PHK-S1.
<table>
<thead>
<tr>
<th></th>
<th>SE9KUS</th>
<th>SE10KUS</th>
<th>SE14.4KUS</th>
<th>SE20KUS</th>
<th>SE30KUS</th>
<th>SE33.3KUS</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (HxWxD)</td>
<td>21 x 12.5 x 10.5 / 540 x 315 x 260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>in/mm</td>
</tr>
<tr>
<td>Dimensions with Safety Switch (HxWxD)</td>
<td>30.5 x 12.5 x 10.5 / 775 x 315 x 260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>in/mm</td>
</tr>
<tr>
<td>Weight</td>
<td>73.2 / 33.2</td>
<td>73.2 / 33.2</td>
<td>99.5 / 45</td>
<td>73.2 / 33.2</td>
<td>99.5 / 45</td>
<td>99.5 / 45</td>
<td>lb/kg</td>
</tr>
<tr>
<td>Weight with Safety Switch</td>
<td>79.7 / 36.2</td>
<td>79.7 / 36.2</td>
<td>106 / 48</td>
<td>79.7 / 36.2</td>
<td>106 / 48</td>
<td>106 / 48</td>
<td>lb/kg</td>
</tr>
<tr>
<td>Cooling</td>
<td>Fans (user replaceable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise (typical)</td>
<td>< 50</td>
<td>< 55</td>
<td>< 50</td>
<td>< 55</td>
<td>< 55</td>
<td>< 55</td>
<td>dBA</td>
</tr>
<tr>
<td>Operating temperature range (1)</td>
<td>-40 to +140 / -40 to +60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>°F/°C</td>
</tr>
<tr>
<td>Operating humidity – non condensing</td>
<td>< 95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Protection rating</td>
<td>NEMA3R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAULT CURRENT CONTRIBUTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inom</td>
<td>25</td>
<td>12</td>
<td>40</td>
<td>24</td>
<td>36.5</td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td>Peak</td>
<td>59</td>
<td>40</td>
<td>70</td>
<td>59</td>
<td>147</td>
<td>92</td>
<td>A</td>
</tr>
<tr>
<td>1 cycle RMS (2)</td>
<td>20</td>
<td>10</td>
<td>25</td>
<td>14</td>
<td>14</td>
<td>38.1</td>
<td>A</td>
</tr>
<tr>
<td>3 cycle RMS (3)</td>
<td>12</td>
<td>10</td>
<td>16.5</td>
<td>8</td>
<td>8.5</td>
<td>39</td>
<td>A</td>
</tr>
<tr>
<td>Duration (4)</td>
<td>15</td>
<td>49</td>
<td>18</td>
<td>9</td>
<td>5</td>
<td>150</td>
<td>ms</td>
</tr>
</tbody>
</table>

(1) SolarEdge’s 9kW and 20kW inverters operate at full power and full currents up to a temperature of 122°F / 50°C. The inverters may be used above this temperature with reduced ratings. For more information, refer to http://www.solaredge.com/files/pdfs/se-temperature-derating-note-na.pdf.

(2) 1 cycle RMS – the integral on one cycle (60Hz) duration

(3) 3 cycle RMS – the integral on 3-cycle duration

(4) Duration - time by which fault current reaches 0
Default Trip Limits and Times According to IEEE1547

NOTE
The inverters are equipped with adjustable utility protective function set-points, and can be aggregated above 30kW on a single Point of Common Connection. The default settings are in compliance with IEEE1547. Utility authorization is required to change these set-points.

<table>
<thead>
<tr>
<th>Voltage Range (% of Base Voltage)</th>
<th>Maximum Clearing Time (Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V < 50%</td>
<td>0.16</td>
</tr>
<tr>
<td>50 % < V < 88%</td>
<td>2.00</td>
</tr>
<tr>
<td>110% < V < 120%</td>
<td>1.00</td>
</tr>
<tr>
<td>V > 120 %</td>
<td>0.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency Range (Hz)</th>
<th>Maximum Clearing Time (Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 60.5</td>
<td>0.16</td>
</tr>
<tr>
<td>< 59.3 (Hawaii – 57)</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Safety Switch

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum DC voltage</td>
<td>500 Vdc</td>
</tr>
<tr>
<td>Maximum DC current</td>
<td>32 Adc</td>
</tr>
<tr>
<td>Nominal AC voltage</td>
<td>208/480 Vac</td>
</tr>
<tr>
<td>Maximum AC current</td>
<td>32 Aac</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-40 to 140 / -40 to +60 °F / °C</td>
</tr>
<tr>
<td>Weight</td>
<td>6.6 / 3.0 lb/kg</td>
</tr>
</tbody>
</table>
If you have technical queries concerning our products, please contact our support through SolarEdge service portal: www.solaredge.com/service/support

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>US & Canada (+1)</td>
<td>(0) 510 498 3200</td>
</tr>
<tr>
<td>Worldwide (+972)</td>
<td>(0) 073 240 3118</td>
</tr>
<tr>
<td>Fax (+1)</td>
<td>(0) 530 273-2769</td>
</tr>
<tr>
<td>Email</td>
<td>ussupport@solaredge.com</td>
</tr>
</tbody>
</table>